In silico prediction of paradoxical effect for oxaliplatin in gastric cancer patients based on their transcriptomic profile
Abstract
Background and purpose: Gastric cancer (GC) is a major global health concern, ranking as the fifth most commonly diagnosed cancer. New treatment strategies like chemoprevention with oxaliplatin (OXA) are emerging, but safety data for GC patients are limited. This in silico study aimed to predict potential paradoxical effects of OXA treatment in GC patients using computational analysis.
Experimental approach: RNA-sequencing data from GSE26942, GSE66229, and TCGA-STAD datasets were analyzed. Differential gene expression was identified using GEO2R and DESeq2. Pathway enrichment and protein-protein interaction networks were constructed to pinpoint genes crucial for GC progression. Finally, the R Survival package identified survival-related differentially expressed genes (DEGs). Interactions between OXA and GC-related genes were retrieved from the CTD database and compared with DEGs.
Findings/Results: A total of 151 dysregulated genes were identified across the datasets, comprising 112 downregulated and 39 upregulated genes. Thirteen genes emerged as potential prognostic biomarkers for overall survival. OXA interacted with 97 genes, of which 14 were linked to both OXA and differentially expressed genes in GC. OXA potentially reversed the expression of seven genes associated with GC progression (BIRC5, CAV1, CDH2, IL6, JUN, SERPINB2, TYMS), while promoting the expression of six others (BLVRB, CDKN2A, MAPK3, PLAU, PTGS2, SERPINE1). Notably, SERPINE1 showed a strong correlation with overall survival.
Conclusion and implications: Our findings suggest that a patient's genetic profile, particularly SERPINE1 expression levels, might be crucial for determining the safety and efficacy of OXA treatment for GC.
Keywords
Full Text:
PDFReferences
Park JY, Herrero R. Recent progress in gastric cancer prevention. Best Pract Res Clin Gastroenterol. 2021;50-51:101733,1-8.DOI: 10.1016/j.bpg.2021.101733.
Pasechnikov V, Chukov S, Fedorov E, Kikuste I, Leja M. Gastric cancer: Prevention, screening and early diagnosis. World J Gastroenterol. 2014;20(38):13842-13862.DOI: 10.3748/wjg.v20.i38.13842.
Necula l, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C. Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 2019;9327(17):2020-2044.DOI: 10.3748/wjg.v25.i17.2029.
Bagheri Z, Rafiei A, Shokrzadeh M, Ajami A, Hosseinikha Z. The TAP1 gene polymorphism in gastric cancer in a population of Mazandaran. Res Pharm Sci. 2012;7(5):500.
Ansari A, Gheysarzadeh A, Sharifi A, Mofid MR. Clinicopathological correlation of insulin-like growth factor binding protein 3 and their death receptor in patients with gastric cancer. Res Pharm Sci. 2024;19(1):42-52.DOI: 10.4103/1735-5362.394819.
Khalafiyan A, Emadi-Baygi M, Wolfien M, Salehzadeh-Yazdi A, Nikpour P. Construction of a three-component regulatory network of transcribed ultraconserved regions for the identification of prognostic biomarkers in gastric cancer. J Cell Biochem. 2023;124(3):396-408.DOI: 10.1002/jcb.30373.
Smyth EC, Nilsson M, Grabsch HI, van Grieken NCT, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635-648.DOI: 10.1016/S0140-6736(20)31288-5.
Wang J, Sun Y, Zhang X, Cai H, Zhang C, Qu H, et al. Oxidative stress activates NORAD expression by H3K27ac and promotes oxaliplatin resistance in gastric cancer by enhancing autophagy flux via targeting the miR-433-3p. Cell Death Dis. 2021;12(1):90,1-15.DOI: 10.1038/s41419-020-03368-y
Ilson DH. Advances in the treatment of gastric cancer. Curr Opin Gastroenterol. 2018;34(6):465-468.DOI: 10.1097/MOG.0000000000000475.
Harada K, Sakamoto N, Ukai S, Yamamoto Y, Thang Q, Daiki P. Establishment of oxaliplatin-resistant gastric cancer organoids : importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer. 2021;24(6):1264-1277.DOI:10.1007/s10120-021-01206-4.
Farrokhi P, Sadeghi A, Sharifi M, Riechelmann R, Moghaddas A. Efficacy and safety of FLOT regimen vs DCF, FOLFOX, and ECF regimens as perioperative chemotherapy treatments for resectable gastric cancer patients; a report from the Middle East. Res Pharm Sci. 2022;17(6):621-634.DOI: 10.4103/1735-5362.359430.
Martinez-Balibrea E, Martínez-Cardús A, Ginés A, de Porras VR, Moutinho C, Layos L, et al. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 2015;14(8):1767-1776.DOI: 10.1158/1535-7163.MCT-14-0636.
Ren LQ, Li Q, Zhang Y. Luteolin suppresses the proliferation of gastric cancer cells and acts in synergy with oxaliplatin. Biomed Res Int. 2020;1-9.DOI: 10.1155/2020/9396512.
Li H, Wang C, Lan L, Yan L, Li W, Evanse I, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci. 2022;79(3):135,1-22.DOI: 10.1007/s00018-022-04129-0
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1-21. DOI: 10.1186/s13059-014-0550-8
Gao CH, Yu G, Cai P. ggVennDiagram: an intuitive, easy-to-use, and highly customizable R package to generate Venn diagram. Front Genet. 2021;12:706907,1-8.DOI: 10.3389/fgene.2021.706907.
Szklarczyk D, Gable AL, Nastou KC, Lyon D , Kirsch R , Pyysalo S, Doncheva NT, et al. The STRING database in 2021:customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D612.DOI: 10.1093/nar/gkaa1074.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramagee D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.DOI: 10.1101/gr.1239303.
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, et al. Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids Res. 2021;49(D1): D1138-D1143.DOI: 10.1093/nar/gkaa891.
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:1-7.DOI: 10.1186/1752-0509-8-S4-S11.
Parveen S. Platinum-based cancer chemotherapeutics: recent trends and future perspectives. Curr Chinese Sci. 2022;2(4):275-293.DOI: 10.2174/2210298102666220404102936.
Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G, et al. Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33(10):1005-1020.DOI: 10.1016/j.annonc.2022.07.004.
Zhu Z, Xu J, Li L, Ye W, Chen B, Zeng J, et al. Comprehensive analysis reveals CTHRC1, SERPINE1, VCAN and UPK1B as the novel prognostic markers in gastric cancer. Transl Cancer Res. 2020;9(7):4093-4110.DOI: 10.21037/tcr-20-211.
Lim B, Park JL, Kim HJ, Park YK, Kim JH, Sohn HA, et al. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis. 2014;35(5):1020-1027.DOI: 10.1093/carcin/bgt409.
Zhuo C, Li X, Zhuang H, Tian S, Cui H, Jiang R, et al. Elevated THBS2, COL1A2, and SPP1 expression levels as predictors of gastric cancer prognosis. Cell Physiol Biochem. 2016;40(6):1316-1324.DOI: 10.1159/000453184.
Shen N, Zhu S, Zhang Z, Yong X. High expression of COL10A1 is an independent predictive poor prognostic biomarker and associated with immune infiltration in advanced gastric cancer microenvironment. J Oncol. 2022;2022:1-10.DOI: 10.1155/2022/1463316.
Sadegh K, Ahmadi A. Hub genes and pathways in gastric cancer: a comparison between studies that used normal tissues adjacent to the tumour and studies that used healthy tissues as calibrator. IET Syst Biol. 2023;17(3):131-141.DOI: 10.1049/syb2.12065.
Chen Z, Wei Y, Zheng Y, Zhu H, Teng Q, Lin X, et al. SERPINB2, an early responsive gene to epigallocatechin gallate, inhibits migration and promotes apoptosis in esophageal cancer cells. Cells. 2022;11(23):3852,1-13.DOI: 10.3390/cells11233852.
Shaulian E. AP-1-the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22(6):894-899.DOI: 10.1016/j.cellsig.2009.12.008.
Su Y, Li J, Shi C, Hruban RH, Radice GL. N-cadherin functions as a growth suppressor in a model of K-ras-induced PanIN. Oncogene. 2016;35(25):3335-3341.DOI: 10.1038/onc.2015.382.
Chen S, Li Y, Zhu Y, Fei J, Song L, Sun G, et al. SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J Oncol. 2022;2022(1):1-17.DOI: 10.1155/2022/2647825.
Tang G, Cho M, Wang X. OncoDB:an interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022;50(D1):D1334-D1339.DOI: 10.1093/nar/gkab970.
Krewski D, Acosta Jr D, Andersen M, Anderson H, Bailar 3rd JC, Boekelheide K, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Heal B Crit Rev. 2010;13(2-4):51-138.DOI: 10.1080/10937404.2010.483176.
Wiegers TC, Davis AP, Cohen KB, Hirschman L, Mattingly CJ. Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD). BMC Bioinformatics. 2009;10:326,1-12.DOI: 10.1186/1471-2105-10-326.
Refbacks
- There are currently no refbacks.
