Anti-inflammatory and cytotoxic effects of Jatropha podagrica extracts on skin cancer

Reawfang Sriyom , Arunporn Itharat , Onmanee Prajuabjinda, Pakakrong Thongdeeying, Srisopa Ruangnoo, Sunita Makchuchit, Pranporn Kuropakornpong, Kanyarat Namphonsaen, Perika Monkanna, Neal M. Davies

Abstract


Background and purpose: Jatropha podagrica Hook. belongs to the Euphorbiaceae family, which possesses anticancer activities and is traditionally applied to treat skin diseases. No reports of J. podagrica anti-neoplastic activity on an amelanotic melanoma and associated inflammatory mediators exist.

Experimental approach: The biological activities, including cytotoxic and anti-inflammatory effects of                   J. podagrica extracts, were evaluated. Key compounds in the extracts were identified using LC-MS/MS analysis.

Findings/Results: The hexane extract of the root (RMH) demonstrated the highest inhibition of NO production with an IC50 of 4.94 ± 0.25 µg/mL, followed by the ethanolic extracts of the root (RME) and stem (SME) with IC50 values of 24.90 ± 1.06 and 25.20 ± 0.10 µg/mL, respectively. However, RMH showed cellular toxicity at 50 µg/mL, while other extracts were non-toxic up to 100 µg/mL. None of the extracts affected the concentrations of inflammatory mediators PGE2 or TNF-α. The cytotoxic activity of SME showed an IC50 of 5.62 ± 0.58 µg/mL, comparable to that of the anticancer drug 5-fluorouracil, with an IC50 of 0.59 ± 0.01 µg/mL. The selectivity index of SME was >17.79, significantly higher than that of 5-fluorouracil, which was 0.08.          LC-MS/MS analysis identified two main compounds from the coumarin group: fraxetin at 5.357 min and its positional isomer tomentin at 5.943 min.

Conclusion and implications: The study indicates that SME exhibits good cytotoxic activity and inhibits key cancer hallmarks such as NO production. The presence of coumarins, identified through LC-MS/MS, suggests that these compounds may play a crucial role in the extract's anticancer effects, highlighting the potential for future development as cancer therapeutics.

 


Keywords


Anti-inflammatory activity; Coumarins; Cytotoxicity; Jatropha podagrica; Skin cancer.

Full Text:

PDF

References


Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki W, et al. Skin cancer:understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer. 2023;22(1):168,1-70.DOI: 10.1186/s12943-023-01854-3.

Trent JT, Kirsner RS. Wounds and malignancy. Adv Skin Wound Care. 2003;16(1):31-34.DOI: 10.1097/00129334-200301000-00014.

Gupta N, Gupta GD, Singh D. Localized topical drug delivery systems for skin cancer: current approaches and prospects. Front Nanotechnol. 2022;4:1-17.DOI: 10.3389/fnano.2022.1006628.

Alabsi AM, Lim KL, Paterson IC, Ali-Saeed R, Muharram BA. Cell cycle arrest and apoptosis induction via modulation of mitochondrial integrity by Bcl-2 family members and caspase dependence in Dracaena cinnabari-treated H400 human oral squamous cell carcinoma. Biomed Res Int. 2016;1-13.DOI: 10.1155/2016/4904016.

Inta A, Trisonthi P, Trisonthi C. Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. J Ethnopharmacol. 2013;149(1):344-351.DOI: 10.1016/j.jep.2013.06.047.

Sabandar CW, Ahmat N, Jaafar FM, Sahidin I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae):a review. Phytochemistry. 2013;85:7-29.DOI: 10.1016/j.phytochem.2012.10.009.

Minh TN, Xuan TD, Tran HD, Van TM, Andriana Y, Khanh TD, et al. Isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica. Molecules. 2019;24(5):899,1-15.DOI: 10.3390/molecules24050889.

Ren S, Xing Y, Wang C, Jiang F, Liu G, Li Z, et al. Fraxetin inhibits the growth of colon adenocarcinoma cells via the Janus kinase 2/signal transducer and activator of transcription 3 signalling pathway. Int J Biochem Cell Biol. 2020;125:1-13.DOI: 10.1016/j.biocel.2020.105777.

Ma Z, Sun Y, Peng W. Fraxetin down-regulates polo-like kinase 4 (PLK4) to inhibit proliferation, migration, and invasion of prostate cancer cells through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Bioengineered. 2022;13(4):9345-9356.DOI: 10.1080/21655979.2022.2054195.

Zhang Y, Wang L, Deng Y, Zhao P, Deng W, Zhang J, et al. Fraxetin suppresses proliferation of non-small-cell lung cancer cells via preventing activation of signal transducer and activator of transcription 3. Tohoku J Exp Med. 2019;248(1):3-12.DOI: 10.1620/tjem.248.3.

Qu L, Lin P, Lin M, Ye S, Papa Akuetteh PD, Zhu Y. Fraxetin inhibits the proliferation and metastasis of glioma cells by inactivating JAK2/STAT3 signaling. Evid Based Complement Alternat Med. 2021; 2021:1-10.DOI: 10.1155/2021/5540139.

Pérez-Hernández J, González-Cortazar M, Marquina S, Herrera-Ruiz M, Meckes-Fischer M, Tortoriello J, et al. Sphaeralcic acid and tomentin, anti-inflammatory compounds produced in cell suspension cultures of Sphaeralcea angustifolia. Planta Med. 2014;80(02/03):209-214.DOI: 10.1055/s-0033-1360302.

Chen L, Huang J, Zhang L, Tian H, Yin S. Jatrogricaine A:a new diterpenoid with a 5/6/6/4 carbon ring system from the stems of Jatropha podagrica. Chin J Nat Med. 2019;17(4):298-302.DOI: 10.1016/S1875-5364(19)30033-0.

Makchuchit S, Rattarom R, Itharat A. The anti-allergic and anti-inflammatory effects of Benjakul extract (a Thai traditional medicine), its constituent plants and its some pure constituents using in vitro experiments. Biomed Pharmacother. 2017;89:1018-1026.DOI: 10.1016/j.biopha.2017.02.066.

Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay:utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23):12827,1-30.DOI: 10.3390/ijms222312827.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.DOI: 10.1016/0022-1759(83)90303-4.

Yun KJ, Kim JY, Kim JB, Lee KW, Jeong SY, Park HJ. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κB inactivation in RAW 264.7 macrophages:involvement of the IKK and MAPK pathways. Int Immunopharmacol. 2008;8(3):431-441.DOI: 10.1016/j.intimp.2007.11.003.

Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods. 2007;42(4):377-387.DOI: 10.1016/j.ymeth.2007.01.003.

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107-1112.DOI: 10.1093/jnci/82.13.1107.

Krzywik J, Mozga W, Aminpour M, Janczak J, Maj E, Wietrzyk J. Synthesis, antiproliferative activity and molecular docking studies of novel doubly modified colchicine amides and sulfonamides as anticancer agents. Molecules. 2020;25(8):1789,1-31.DOI: 10.3390/molecules25081789.

Sharma A, Cannoo DS. A comparative study of effects of extraction solvents/techniques on percentage yield, polyphenolic composition, and antioxidant potential of various extracts obtained from stems of Nepeta leucophylla:RP‐HPLC‐DAD assessment of its polyphenolic constituents. J Food Biochem. 2016;41(2):1-12.DOI: 10.1111/jfbc.12337.

Kalia K, Sharma K, Singh HP, Singh B. Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. J Agric Food Chem. 2008;56(21):10129-10134.DOI: 10.1021/jf802188b.

Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric oxide. 2004;10(4):179-193.DOI: 10.1016/j.niox.2004.04.005.

Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15(6):252-259.DOI: 10.1007/s10787-007-0013-x.

Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002;12(5-6):311-320.DOI: 10.1038/sj.cr.7290133.

Witte MB, Barbul A. Role of nitric oxide in wound repair. Am J Surg. 2002;183(4):406-412.DOI: 10.1016/s0002-9610(02)00815-2.

Coetzee M, Haag M, Claassen N, Kruger MC. Stimulation of prostaglandin E2 (PGE2) production by arachidonic acid, oestrogen, and parathyroid hormone in MG-63 and MC3T3-E1 osteoblast-like cells. Prostaglandins Leukot Essent Fat Acids. 2005;73(6):423-430.DOI: 10.1016/j.plefa.2005.08.005.

Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res. 2013;62(7):641-651.DOI: 10.1007/s00011-013-0633-0.

Kimura Y, Sumiyoshi M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur J Pharmacol. 2015;746:115-125.DOI: 10.1016/j.ejphar.2014.10.048.

Kimura Y, Sumiyoshi M, Sakanaka M, Taniguchi M, Baba K. In vitro and in vivo antiproliferative effect of a combination of ultraviolet‐A and alkoxy furocoumarins isolated from umbelliferae medicinal plants, in melanoma cells. Photochem Photobiol. 2013;89(5):1216-1225.DOI: 10.1111/php.12122.

Rumzhum NN, Sohrab MH, Al-Mansur MA, Rahman MS, Hasan CM, Rashid MA. Secondary metabolites from Jatropha podagrica Hook. J Phys Sci. 2012;23(1):29-37.

Ghali W, Vaudry D, Jouenne T, Marzouki MN. Assessment of cyto-protective, antiproliferative and antioxidant potential of a medicinal plant, Jatropha podagrica. Ind Crops Prod. 2013;44,111-118.DOI: 10.1016/j.indcrop.2012.10.020.

Liu WW, Zhang Y, Yuan CM, Yu C, Ding JY, Li XX, et al. Japodagricanones A and B, novel diterpenoids from Jatropha podagrica. Fitoterapia. 2014;98:156-159.DOI: 10.1016/j.fitote.2014.07.021.

Yuan HT, Li QF, Tian T, Zhang CY, Huang ZQ, Fan C X, et al. Lathyrane diterpenoids from Jatropha podagrica and their antitumor activities in human osteosarcoma cells. Nat Prod Res. 2021;35(23):5089-5095.DOI: 10.1080/14786419.2020.1779719.

Ee GCL, Lim CK, Taufiq-Yap YH, Go R. Ferulic acid ester from Jatropha podagrica (Euphorbiaceae). Malays J Chem. 2005;7:45-48.

Neto LGDN, Pinto LDS, Bastos RM, Evaristo FFV, Vasconcelos MAD, Carneiro VA, et al. Effect of the lectin of Bauhinia variegata and its recombinant isoform on surgically induced skin wounds in a murine model. Molecules. 2011;16(11):9298-9315.DOI: 10.3390/molecules16119298.

Liu G, Liu Z, Yan Y, Wang H. Effect of fraxetin on proliferation and apoptosis in breast cancer cells. Oncol Lett. 2017;14(6):7374-7378.DOI: 10.3892/ol.2017.7143.

Song J, Ham J, Hong T, Song G, Lim W. Fraxetin suppresses cell proliferation and induces apoptosis through mitochondria dysfunction in human hepatocellular carcinoma cell lines Huh7 and Hep3B. Pharmaceutics. 2021;13(1):112,1-13.DOI: 10.3390/pharmaceutics13010112.

Yao H, Li X, Pan X, Xu J, Zhao S, Su Z, et al. Fraxetin exerts anticancer effect in glioma by suppressing MiR‐21‐3p. Drug Dev Res. 2022;83(2):501-511.DOI: 10.1002/ddr.21881.

Kuo PL, Huang YT, Chang CH, Chang JK. Fraxetin inhibits the induction of anti-Fas IgM, tumor necrosis factor-α and interleukin-1β-mediated apoptosis by Fas pathway inhibition in human osteoblastic cell line MG-63. Int. Immunopharmacol. 2006;6(7): 1167-1175.DOI: 10.1016/j.intimp.2006.02.010.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.