Gold nanoparticles from Artemisia absinthium, Morus nigra, and Peganum harmala: biosynthesis, characterization, and their biological evaluations against cancer cells
Abstract
Background and purpose: Metallic nanoparticles (NPs) can be applied in various biomedical fields, such as antibacterial and anti-cancer agents. Synthesizing metallic NPs by green chemistry procedures makes them eco-friendly and easier to prepare. This study aimed to develop 3 different gold (Au) NPs, using plant extracts including Artemisia absinthium (AA) aerial parts, Morus nigra (MN) fruits, and Peganum harmala (PH) seeds.
Experimental approach: Green AuNPs were synthesized by mixing plant extracts and HAuCl4.3H2O and heating the mixture at 60 °C. Cytotoxic activity of synthesized AuNPs was evaluated using the MTT assay, followed by flow cytometry to assess its mechanism. Synthesis of plant AuNPs was confirmed by relevant color change, DLS, Zeta potential, and were characterized by a relevant surface plasmon resonance peak for AuNPs between 500 to 600 nm.
Findings/Results: AA-AuNPs, MN-AuNPs, and PH-AuNPs were cytotoxic against cancer cell lines in a dose-dependent manner. Results also revealed that PH-AuNPs were the most potent NPs (IC50 values of 7.7, 16.7, 30, and 40 µg/mL against HeLa, HT-29, OVCAR3 and MCF-7 cell lines, respectively). HeLa cells were the most sensitive cell line toward all tested NPs, significantly. Flow cytometry results confirmed that the cytotoxic effects of AuNPs were mediated through apoptosis induction.
Conclusion and implications: Using plants to formulate metallic NPs is inexpensive, easily accessible, and renewable. Additionally, due to their considerable cytotoxicity, their applications as a cancer treatment option is a promising approach that warrants further investigation. Thus, the rapidly synthesized AuNPs can play a role in nanotechnology and biomedical applications.
Keywords
Full Text:
PDFReferences
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-2850.DOI: 10.1039/C1GC15386B.
Shamaeizadeh N, Varshosaz J, Mirian M, Aliomrani M. Glutathione targeted tragacanthic acid-chitosan as a non-viral vector for brain delivery of miRNA-219a-5P:an in vitro/in vivo study. Int J Biol Macromol. 2022;200:543-556.DOI: 10.1016/j.ijbiomac.2022.01.100.
Botha TL, James TE, Wepener V. Comparative aquatic toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach. J Nanomater. 2015;2015:1-16.DOI: 10.1155/2015/986902.
Botha TL, Elemike EE, Horn S, Onwudiwe DC, Giesy JP, Wepener V. Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci Rep. 2019;9:4169,1-8.DOI: 10.1038/s41598-019-40816-y.
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534,1-34.DOI: 10.3390/ijms17091534.
Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci. 2017;12(2):88-98.DOI: 10.4103/1735-5362.202447.
Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347(1):46-53.DOI: 10.1016/j.canlet.2014.02.006.
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26-49.DOI: 10.1002/smll.200700595.
Thwala M, Musee N, Sikhwivhilu L, Wepener V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Process Impacts. 2013;15(10):1830-1843.DOI: 10.1039/C3EM00235G.
Aboyewa JA, Sibuyi NR, Meyer M, Oguntibeju OO. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern Africa and their biological applications. Plants. 2021;10(9):1929,1-24.DOI: 10.3390/plants10091929.
Bawazeer S, Rauf A, Shah SUA, Shawky AM, Al-Awthan YS, Bahattab OS, et al. Green synthesis of silver nanoparticles using Tropaeolum majus: phytochemical screening and antibacterial studies. Green Process Synth. 2021;10(1):85-94.DOI: 10.1515/gps-2021-0003.
Siddiqi KS, Husen A, Rao RA. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14,1-28.DOI: 10.1186/s12951-018-0334-5.
Iranshahy M, Bazzaz SF, Haririzadeh G, Abootorabi BZ, Mohamadi AM, Khashyarmanesh Z. Chemical composition and antibacterial properties of Peganum harmala L. Avicenna J Phytomed. 2019;9(6):530-539.DOI: 10.22038/AJP.2019.13382.
Asadzadeh R, Abbasi N, Bahmani M. Extraction and identification of chemical compounds of Peganum harmala L. seed essential oil by HS-SPME and GC-MS methods. Tradit Integr Med. 2021;6(3):229-235.DOI: 10.18502/tim.v6i3.7310.
Farouk L, Laroubi A, Aboufatima R, Benharref A, Chait A. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved. J Ethnopharmacol. 2008;115(3):449-454.DOI: 10.1016/j.jep.2007.10.014.
Panahi Y, Saadat A, Seifi M, Rajaee M, Butler AE, Sahebkar A. Effects of Spinal-Z in patients with gastroesophageal cancer. J Pharmacopuncture. 2018;21(1):26-34.DOI: 10.3831/KPI.2018.21.004.
Msaada K, Salem N, Bachrouch O, Bousselmi S, Tammar S, Alfaify A, et al. Chemical composition and antioxidant and antimicrobial activities of wormwood (Artemisia absinthium L.) essential oils and phenolics. J Chem. 2015;2015(1):804658,1-12.DOI: 10.1155/2015/804658.
Basta A, Tzakou O, Couladis M, Pavlović M. Chemical composition of Artemisia absinthium L. from Greece. J Essent Oil Res. 2007;19(4):316-318.DOI: 10.1080/10412905.2007.9699291.
Shafi G, Hasan TN, Syed NA, Al-Hazzani AA, Alshatwi AA, Jyothi A, et al. Artemisia absinthium (AA): a novel potential complementary and alternative medicine for breast cancer. Mol Biol Rep. 2012;39(7):7373-7379.DOI: 10.1007/s11033-012-1569-0.
Kostic DA, Dimitrijevic DS, Mitic SS, Mitic MN, Stojanovic GS, Zivanovic AV. Phenolic contents and antioxidant activity of fruit extracts of Murus nigra L (Muraceae) from southeast Serbia. Trop J Pharm Res. 2013; 12(1):105-110.DOI: 10.4314/tjpr.v12i1.17.
Ercisli S, Orhan E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007;103(4):1380-1384.DOI: 10.1016/j.foodchem.2006.10.054.
Imran M, Khan H, Shah M, Khan R, Khan F. Chemical composition and antioxidant activity of certain Morus species. J Zhejiang Univ Sci B. 2010;11(12):973-980.DOI: 10.1631/jzus.B1000173.
Keskin C, Atalar MN, Baran MF, Baran A. Environmentally friendly rapid synthesis of gold nanoparticles from Artemisia absinthium plant extract and application of antimicrobial activities. J Inst Sci Technol. 2021;11(1):365-367.DOI: 10.21597/jist.779169.
Moustafa NE, Alomari AA. Green synthesis and bactericidal activities of isotropic and anisotropic spherical gold nanoparticles produced using Peganum harmala L. leaf and seed extracts. Biotechnol Appl Biochem. 2019;66(4):664-672.DOI: 10.1002/bab.1782.
Klahs, PC, McMurchie EK, Nikkel JJ, Clark LG. A maceration technique for soft plant tissue without hazardous chemicals. Appl Plant Sci. 2023;11(5):e11543,1-10.DOI: 10.1002/aps3.11543.
Ahmad A, Syed F, Shah A, Khan Z, Tahir K, Khan AU, et al. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv. 2015;5(90):73793-73806.DOI: 10.1039/CSRA13206A.
Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R. Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res. 2016;32(2):95-102.DOI: 10.5487/TR.2016.32.2.095.
Hassanzadeh F, Sadeghi-Aliabadi H, Jafari E, Sharifzadeh A, Dana N. Synthesis and cytotoxic evaluation of some quinazolinone- 5-(4-chlorophenyl) 1, 3, 4-oxadiazole conjugates. Res Pharm Sci. 2019;14(5):408-413.DOI: 10.4103/1735-5362.268201.
Kazemi Pilehrood M, Dilamian M, Mirian M, Sadeghi-Aliabadi H, Maleknia L, Nousiainen P, et al. Nanofibrous chitosan-polyethylene oxide engineered scaffolds: a comparative study between simulated structural characteristics and cells viability. Biomed Res Int. 2014;2014:438065,1-9.DOI: 10.1155/2014/438065.
Noruzi M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng. 2015;38(1):1-14.DOI: 10.1007/s00449-014-1251-0.
Premasudha P, Venkataramana M, Abirami M, Vanathi P, Krishna K, Rajendran R. Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bull Mater Sci. 2015;38(4):965-973.DOI: 10.1007/s12034-015-0945-5.
Aljabali AA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, et al. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials. 2018;8(3):174,1-15.DOI: 10.3390/nano8030174.
Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces. 2014;6(11):8080-8089.DOI: 10.1021/am500302t.
Kang JP, Kim YJ, Singh P, Huo Y, Soshnikova V, Markus J, et al. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. Artif Cells Nanomed Biotechnol. 2018;46(8):1530-1540.DOI: 10.1080/21691401.2017.1376674.
Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc. 2015;19(3):311-317.DOI: 10.1016/j.jscs.2012.04.007.
Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol. 2010;80(12):1833-1843.DOI: 10.1016/j.bcp.2010.07.021.
Gangwar RK, Dhumale VA, Kumari D, Nakate UT, Gosavi S, Sharma RB, et al. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater Sci Eng C. 2012;32(8):2659-2663.DOI: 10.1016/j.msec.2012.07.022.
Seyed Hassan Tehrani S, Hashemi Sheikh Shabani S, Tahmasebi Enferadi S, Rabiei Z. Growth inhibitory impact of Peganum harmala L. on two breast cancer cell lines. Iran J Biotechnol. 2014;12(1):8-14.DOI: 10.5812/ijb.18562.
de Freitas MM, Fontes PR, Souza PM, Fagg CW, Guerra ENS, de Medeiros Nóbrega YK, et al. Extracts of Morus nigra L. leaves standardized in chlorogenic acid, rutin, and isoquercitrin: tyrosinase inhibition and cytotoxicity. PLoS One. 2016;11(9) e0163130,1-24.DOI: 10.1371/journal.pone.0163130.
Mohammad MH, Kadhum MEH, Abdul-Muniam Ali Z. Cytotoxic effect of Peganum harmala L. extract and induction of apoptosis on cancerous cell line. Iraqi J Cancer Med Genet. 2010;3(1):11-16.DOI: 10.29409/ijcmg.v3i1.21.
Emami SA, Vahdati-Mashhadian N, Vosough R, Oghazian MB. The anticancer activity of five species of Artemisia on Hep2 and HepG2 cell lines. Pharmacol Online. 2009;3:327-339.
Qadir MI, Ali M, Ibrahim Z. Anti-cancer activity of Morus nigra leaves extract. Bangladesh J Pharmacol. 2014;9(4):496-497.DOI: 10.3329/bjp.v9i4.19783.
Ahmed A, Ali M, El-Kholie E, El-Garawani I, Sherif N. Anticancer activity of Morus nigra on human breast cancer cell line (MCF-7): the role of fresh and dry fruit extracts. J Biosci Appl Res. 2016;6(2):352-361.DOI: 10.21608/JBAAR.2016.108382.
Çakıroğlu E, Uysal T, Çalıbaşı Koçal G, Aygenli F, Baran G, Baskın Y. The role of Morus nigra extract and its active compounds as drug candidate on human colorectal adenocarcinoma cell line HT-29. Int J Clin Oncol Cancer Res. 2017;2(1):10-14.DOI: 10.11648/j.ijcocr.20170201.13.
Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization, and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces. 2013;107:227-234.DOI: 10.1016/j.colsurfb.2013.02.004.
Patil MP, Jin X, Simeon NC, Palma J, Kim D, Ngabire D, et al. Anticancer activity of Sasa borealis leaf extract-mediated gold nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(1):82-88.DOI: 10.1080/21691401.2017.1293675.
Roy S, Das TK, Maiti GP, Basu U. Microbial biosynthesis of non-toxic gold nanoparticles. Mater Sci Eng B. 2016;203:41-51.DOI: 10.1016/j.mseb.2015.10.008.
Benelli G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer-a brief review. Enzyme Microb Technol. 2016;95:58-68.DOI: 10.1016/j.enzmictec.2016.08.022.
Rajan A, Rajan AR, Philip D. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano. 2016;2(C): 1-8.DOI: 10.1016/j.onano.2016.11.002.
Wang C, Mathiyalagan R, Kim YJ, Castro-Aceituno V, Singh P, Ahn S, et al. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomedicine. 2016;11:3691-3701.DOI: 10.2147/IJN.S97181.
Vijayakumar S, Ganesan S. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J Nanomater. 2012;2012:1-8.DOI: 10.1155/2012/734398.
Zhu Y, Liao L. Applications of nanoparticles for anticancer drug delivery: a review. J Nanosci Nanotechnol. 2015;15(7):4753-4773.DOI: 10.1166/jnn.2015.10298.
Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem. 2020;25(1):23-37.DOI: 10.1007/s00775-019-01729-3.
De Matteis V, Rizzello L, Ingrosso C, Liatsi-Douvitsa E, De Giorgi ML, De Matteis G, et al. Cultivar-dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different Olea europaea trees. Nanomaterials. 2019;9(11):1544,1-24.DOI: 10.3390/nano9111544.
Balashanmugam P, Durai P, Balakumaran MD, Kalaichelvan PT. Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. J Photochem Photobiol B Biol. 2016;165: 163-173.DOI: 10.1016/j.jphotobiol.2016.10.013.
Virmani I, Sasi C, Priyadarshini E, Kumar R, Sharma SK, Singh GP, et al. Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. J Clust Sci. 2020;31(4):867-876.DOI: 10.1007/s10876-019-01695-5.
Chen J, Li Y, Fang G, Cao Z, Shang Y, Alfarraj S, et al. Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab J Chem. 2021;14(3):103000,1-9.DOI: 10.1016/j.arabjc.2021.103000.
Yadegarynia S, Pham A, Ng A, Nguyen D, Lialiutska T, Bortolazzo A, et al. Profiling flavonoid cytotoxicity in human breast cancer cell lines: determination of structure-function relationships. Nat Prod Commun. 2012;7(10):1295-1304.PMID: 23156993.
Bouyahya A, Omari NE, Bakrim S, Hachlafi NE, Balahbib A, Wilairatana P, et al. Advances in dietary phenolic compounds to improve chemosensitivity of anticancer drugs. Cancers. 2022;14(19):4573,1-20.DOI: 10.3390/cancers14194573.
Khan H, Alam W, Alsharif KF, Aschner M, Pervez S, Saso L. Alkaloids and colon cancer: molecular mechanisms and therapeutic implications for cell cycle arrest. Molecules. 2022;27(3):920,1-26.DOI: 10.3390/molecules27030920.
Refbacks
- There are currently no refbacks.
