Expression and functional characterization of an anti-CD22 scFv targeting B-cell malignancies
Abstract
Background and purpose: Single-chain variable fragments (scFvs) offer advantages over full-length monoclonal antibodies in cancer therapy, including reduced size, lower production costs, and easier handling. However, Escherichia coli (E. coli) often leads to the formation and aggregation of inclusion bodies (IBs). This study aimed to optimize the expression and purification of an anti-CD22 scFv (CD22-scFv) in E. coli and evaluate its functional properties.
Experimental approach: The CD22-scFv construct was subcloned into pET-28a(+) and expressed in E. coli strains Rosetta (DE3) and Rosetta-gami 2. To overcome IBs formation, two purification methods were employed to enhance soluble protein production: hybrid conditions, a novel one-step immobilized metal affinity chromatography (IMAC)-based on-column refolding method was employed, using gradually decreasing urea and increasing imidazole concentrations; native conditions, expression parameters (IPTG concentration, post-induction temperature, and time) were optimized, followed by IMAC. The CD22-scFv binding to CD22 antigen and its anti-proliferative effects on target cells were assessed via flow cytometry and MTT assay.
Findings/Results: CD22-scFv was successfully expressed in Rosetta (DE3) but not Rosetta-gami 2. Hybrid purification yielded 15.86 mg/L protein, outperforming native purification (3.65 mg/L). Flow cytometry confirmed the binding of native- and hybrid-purified CD22-scFv to CD22 Raji cells with 75.5% and 55.8% efficiency, respectively. Native-purified CD22-scFv significantly inhibited Raji cell proliferation while sparing CD22− cells.
Conclusion and implications: This study established a scalable and cost-effective strategy for producing functional CD22-scFv with high specificity and anti-proliferative effects. The findings highlight its potential for targeted therapies and diagnostics, warranting further in vivo and clinical studies.
Keywords
Full Text:
PDFReferences
Keykhaei M, Masinaei M, Mohammadi E, Azadnajafabad S, Rezaei N, Saeedi Moghaddam S, et al. A global, regional, and national survey on burden and quality of care index (QCI) of hematologic malignancies; global burden of disease systematic analysis 1990–2017. Exp Hematol Oncol. 2021;10(1):11,1-15.DOI: 10.1186/s40164-021-00198-2.
Zhang N, Wu J, Wang Q, Liang Y, Li X, Chen G, et al. Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer J. 2023;13(1):1-13.DOI: 10.1038/s41408-023-00853-3.
Sullivan-Chang L, O’Donnell RT, Tuscano JM. Targeting CD22 in B-cell malignancies: current status and clinical outlook. BioDrugs. 2013;27(4):293-304.DOI: 10.1007/s40259-013-0016-7.
Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, et al. Microscale to manufacturing scale-up of cell-free cytokine production- a new approach for shortening protein production development timelines. Biotechnol Bioeng. 2011;108(7):1570-1578.DOI: 10.1002/bit.23103.
Kesik‐Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem. 2018;65(3):306-322.DOI: 10.1002/bab.1617.
Rader RA. (Re)defining biopharmaceutical. Nat Biotechnol. 2008;26(7):743-751.DOI: 10.1038/nbt0708-743.
Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody aggregation: insights from sequence and structure. Antibodies. 2016;5(3): 19,1-23. DOI: 10.3390/antib5030019.
Vázquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108(7):1494-1508.DOI: 10.1002/bit.23155.
Edwards E, Livanos M, Krueger A, Dell A, Haslam SM, Mark Smales C, et al. Strategies to control therapeutic antibody glycosylation during bioprocessing: synthesis and separation. Biotechnol Bioeng. 2022;119(6):1343-1358.DOI: 10.1002/bit.28066.
Mikiewicz D, Łukasiewicz N, Zieliński M, Cecuda-Adamczewska V, Bierczyńska-Krzysik A, Romanik-Chruścielewska A, et al. Bacterial expression and characterization of an anti-CD22 single-chain antibody fragment. Protein Expr Purif. 2020;170:105594,1-8.DOI: 10.1016/j.pep.2020.105594.
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126-1136.DOI: 10.1038/nbt1142.
Gupta V, Sudhakaran IP, Islam Z, Vaikath NN, Hmila I, Lukacsovich T, et al. Expression, purification and characterization of α-synuclein fibrillar specific scFv from inclusion bodies. PLoS One. 2020;15(11):1-17.DOI: 10.1371/journal.pone.0241773.
Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol. 2019;7:420,1-35.DOI: 10.3389/fbioe.2019.00420.
Gholizadeh M, Khanahmad H, Memarnejadian A, Aghasadeghi MR, Roohvand F, Sadat SM, et al. Design and expression of fusion protein consists of HBsAg and Polyepitope of HCV as an HCV potential vaccine. Adv Biomed Res. 2015;4:243,1-7.DOI: 10.4103/2277-9175.168610.
Soheili S, Jahanian-Najafabadi A, Akbari V. Evaluation of soluble expression of recombinant granulocyte macrophage stimulating factor (rGM-CSF) by three different E. coli strains. Res Pharm Sci. 2020;15(3):218-225.DOI: 10.4103/1735-5362.288424.
Jevševar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J, Menart V. Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog. 2005;21(2): 632-639.DOI: 10.1021/bp0497839.
Ventura S, Villaverde A. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 2006;24(4):179-185.DOI: 10.1016/j.tibtech.2006.02.007.
Zhu S, Gong C, Ren L, Li X, Song D, Zheng G. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression. Appl Microbiol Biotechnol. 2013;97(2):837-845.DOI: 10.1007/s00253-012-4630-y.
Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, et al. Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep. 2019;9(1):16850,1-11.DOI: 10.1038/s41598-019-53200-7.
Song HN, Jang JH, Kim YW, Kim DH, Park SG, Lee MK, et al. Refolded scFv antibody fragment against myoglobin shows rapid reaction kinetics. Int J Mol Sci. 2014;15(12):23658-23671.DOI: 10.3390/ijms151223658.
San-Miguel T, Pérez-Bermúdez P, Gavidia I. Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus. 2013;2(1):89,1-4.DOI: 10.1186/2193-1801-2-89.
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol. 2021;9:630551,1-18.DOI: 10.3389/fbioe.2021.630551.
Glynou K, Ioannou PC, Christopoulos TK. One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expr Purif. 2003;27(2):384-390.DOI: 10.1016/S1046-5928(02)00614-9.
Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, et al. Immobilized-Metal Affinity Chromatography (IMAC). Methods Enzymol. 2009;463:439-473.DOI: 10.1016/S0076-6879(09)63027-5.
Esfandiar S, Hashemi‐Najafabadi S, Shojaosadati SA, Sarrafzadeh SA, Pourpak Z. Purification and refolding of Escherichia coli-expressed recombinant human interleukin‐2. Biotechnol Appl Biochem. 2010;55(4):209-214.DOI: 10.1042/BA20090256.
Liu M, Wang X, Yin C, Zhang Z, Lin Q, Zhen Y, et al. One‐step on‐column purification and refolding of a single‐chain variable fragment (scFv) antibody against tumour necrosis factor α. Biotechnol Appl Biochem. 2006;43(3):137-145.DOI: 10.1042/BA20050194.
Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther. 2022;7(1):39,1-28.DOI: 10.1038/s41392-021-00868-x.
Zinn S, Vazquez-Lombardi R, Zimmermann C, Sapra P, Jermutus L, Christ D. Advances in antibody-based therapy in oncology. Nat Cancer. 2023;4(2):165-180.DOI: 10.1038/s43018-023-00516-z.
Wayne AS, FitzGerald DJ, Kreitman RJ, Pastan I. Immunotoxins for leukemia. Blood. 2014;123(16):2470-2477.DOI: 10.1182/blood-2014-01-492256.
Tu X, LaVallee T, Lechleider R. CD22 as a target for cancer therapy. J Exp Ther Oncol. 2011;9(3): 241-248.PMID: 22070056.
Wallace ZS, Harkness T, Blumenthal KG, Choi HK, Stone JH, Walensky RP. Increasing operational capacity and reducing costs of rituximab administration: a costing analysis. ACR Open Rheumatol. 2020;2(5):261-268.DOI: 10.1002/acr2.11133.
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem. 2019;26(3):396-426.DOI: 10.2174/0929867324666170817152554.
Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220-233.DOI: 10.1111/j.1476-5381.2009.00190.x.
Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacomet Syst Pharmacol. 2017;6(9):576-588.DOI: 10.1002/psp4.12224.
Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, et al. Mechanisms of action and limitations of monoclonal antibodies and single chain fragment variable (scFv) in the treatment of cancer. Biomedicines. 2023;11(6):1610,1-25.DOI: 10.3390/biomedicines11061610.
Brofelth M, Städe LW, Ekstrand AI, Edfeldt LP, Kovačič R, Nielsen TT, et al. Site-specific photocoupling of pBpa mutated scFv antibodies for use in affinity proteomics. Biochim Biophys Acta Proteins Proteom. 2017;1865(8):985-996.DOI: 10.1016/j.bbapap.2017.03.007.
Winter G, Milstein C. Man-made antibodies. Nature. 1991;349(6307):293-299.DOI: 10.1038/349293a0.
Chames P, Baty D. Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiol Lett. 2000;189(1):1-8.DOI: 10.1111/j.1574-6968.2000.tb09197.x.
Guglielmi L, Martineau P. Expression of single-chain Fv fragments in E. coli cytoplasm. Methods Mol Biol. 2009;562:215-224.DOI: 10.1007/978-1-60327-302-2_17.
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact. 2009;8:26,1-18.DOI: 10.1186/1475-2859-8-26.
Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005;4(1):1,1-8.DOI: 10.1186/1475-2859-4-1.
Salinas G, Pellizza L, Margenat M, Fló M, Fernández C. Tuned Escherichia coli as a host for the expression of disulfide‐rich proteins. Biotechnol J. 2011;6(6):686-699.DOI: 10.1002/biot.201000335.
Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol. 1995;6(5):494-500.DOI: 10.1016/0958-1669(95)80082-4.
Novagen, Inc. 2004 EMD Biosciences, Inc. Competent Cells. Available at:
https://www.scribd.com/document/59544787/Competent-Cells-Novagen-Detailed.
Shafiee F, Rabbani M, Jahanian-Najafabadi A. Optimization of the expression of DT386-BR2 fusion protein in Escherichia coli using response surface methodology. Adv Biomed Res. 2017;6:22,1-6.DOI: 10.4103/2277-9175.201334.
Ahmadzadeh M, Farshdari F, Behdani M, Nematollahi L, Mohit E. Cloning, expression and one-step purification of a novel IP-10-(anti-HER2 scFv) fusion protein in Escherichia coli. Int J Pept Res Ther. 2021;27(1):433-446.DOI: 10.1007/s10989-020-10100-z.
Akbari V, Mir Mohammad Sadeghi H, Jafrian-Dehkordi A, Abedi D, Chou CP. Functional expression of a single-chain antibody fragment against human epidermal growth factor receptor 2 (HER2) in Escherichia coli. J Ind Microbiol Biotechnol. 2014;41(6):947-956.DOI: 10.1007/s10295-014-1437-0.
Atroshenko DL, Sergeev EP, Golovina DI, Pometun AA. Additivities for soluble recombinant protein expression in cytoplasm of Escherichia coli. Fermentation. 2024;10(3):120,1-12. DOI: 10.3390/fermentation10030120.
Malakar P, Venkatesh KV. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol. 2012;93(6):2543-2549.DOI: 10.1007/s00253-011-3642-3.
Farshdari F, Ahmadzadeh M, Nematollahi L, Mohit E. The improvement of anti-HER2 scFv soluble expression in Escherichia coli. Braz J Pharm Sci. 2020;56:e17861,1-8.DOI: 10.1590/s2175-97902019000317861.
Barkhordari F, Sohrabi N, Davami F, Mahboudi F, Garoosi YT. Cloning, expression and characterization of a HER2-alpha luffin fusion protein in Escherichia coli. Prep Biochem Biotechnol. 2019;49(8):759-766.DOI: 10.1080/10826068.2019.1608447.
Liu M, Wang B, Wang F, Yang Z, Gao D, Zhang C, et al. Soluble expression of single-chain variable fragment (scFv) in Escherichia coli using superfolder green fluorescent protein as fusion partner. Appl Microbiol Biotechnol. 2019;103(15):6071-6079.DOI: 10.1007/s00253-019-09925-6.
Rasooli F, Hashemi A. Efficient expression of EpEX in the cytoplasm of Escherichia coli using thioredoxin fusion protein. Res Pharm Sci. 2019;14(6):554-565.DOI: 10.4103/1735-5362.272564.
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact. 2015;14:41,1-10.DOI: 10.1186/s12934-015-0222-8.
de Groot NS, Ventura S. Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett. 2006;580(27):6471-6476.DOI: 10.1016/j.febslet.2006.10.071.
Koçer İ, Cox EC, DeLisa MP, Çelik E. Effects of variable domain orientation on anti-HER2 single-chain variable fragment antibody expressed in the Escherichia coli cytoplasm. Biotechnol Prog. 2021;37(2):e3102,1-19.DOI: 10.1002/btpr.3102.
Zhu YQ, Tong WY, Wei DZ, Zhou F, Zhao JB. Environmental stimuli on the soluble expression of anti-human ovarian carcinoma × anti-human CD3 single-chain bispecific antibody in recombinant Escherichia coli. Biochem Eng J. 2007;37(2):184-191.DOI: 10.1016/j.bej.2007.04.010.
Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, et al. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc. 2023;4(4):102572,1-16.DOI: 10.1016/j.xpro.2023.102572.
Zarei N, Vaziri B, Shokrgozar MA, Mahdian R, Fazel R, Khalaj V. High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris. Appl Microbiol Biotechnol. 2014;98(24):10023-10039.DOI: 10.1007/s00253-014-6071-2.
Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol. 2012;2:96,1-14.DOI: 10.3389/fimmu.2011.00096
Refbacks
- There are currently no refbacks.
