Evaluation of acute and sub-acute toxicity of Curcuma aeruginosa Roxb. essential oil in Sprague Dawley rats
Abstract
Background and purpose: Curcuma aeruginosa rhizome essential oil (CREO) is widely used in traditional medicine owing to its diverse biological activities. However, no information regarding its potential toxicity is available. This study aimed to evaluate the potential acute and sub-acute oral toxicities of CREO in Sprague Dawley rats.
Experimental approach: CREO was isolated via steam distillation and characterized using GC/MS. For acute toxicity, rats were divided into four groups and administered CREO at 2, 4, 8, and 16 g/kg. For the sub-acute evaluation, 30 male and 30 female rats were divided into 6 groups (1 control, 3 treatment doses, and 2 satellite), with doses of 50, 100, and 200 mg/kg BW administered for 28 days.
Findings/Results: GC/MS analysis identified eucalyptol, camphor, and epicurzerenone as the main phytochemically active components in CREO. The acute toxicity test demonstrated that CREO was toxic only at very high doses, with a lethal dose (LD50) of 5662 mg/kg of body weight. Evaluation of sub-acute toxicity showed no significant changes in body weight, hematological, biochemical, and histopathological parameters in rats receiving CREO at doses < 200 mg/kg. However, rats that received CREO at 200 mg/kg showed liver early abnormalities. Similar to most natural extracts, CREO showed a hormetic dose response.
Conclusion and implications: This study suggests that CREO can be safely administered orally for therapeutic purposes at controlled doses. However, prolonged consumption and/or high doses may pose potential risks. Further evaluations are required to determine possible long-term effects.
Keywords
Full Text:
PDFReferences
Osaili TM, Dhanasekaran DK, Zeb F, Faris ME, Naja F, Radwan H, et al. A status review on health-promoting properties and global regulation of essential oils. Molecules. 2023;28(4):1809. DOI: 10.3390/molecules28041809.
Tambur Z, Miljković-Selimović B, Opačić D, Vuković B, Malešević A, Ivančajić L, et al. Inhibitory effects of propolis and essential oils on oral bacteria. J Infect Dev Ctries. 2021;15(7):1027-1031. DOI: 10.3855/jidc.14312.
Sandner G, Heckmann M, Weghuber J. Immunomodulatory activities of selected essential oils. Biomolecules. 2020;10(8):1139. DOI: 10.3390/biom10081139.
Dagli N, Dagli R, Mahmoud R, Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: a review. J Int Soc Prev Community Dent. 2015;5(5):335-340. DOI: 10.4103/2231-0762.165933.
Sharma N, Gupta N, Orfali R, Kumar V, Patel CN, Peng J, et al. Evaluation of the antifungal, antioxidant, and anti-diabetic potential of the essential oil of Curcuma longa leaves from the North-Western Himalayas by in vitro and in silico analysis. Molecules. 2022;27(22):7664. DOI: 10.3390/molecules27227664.
Jackson-Davis A, White S, Kassama LS, Coleman S, Shaw A, Mendonca A, et al. A review of regulatory standards and advances in essential oils as antimicrobials in foods. J Food Prot. 2023;26(2):100025. DOI: 10.1016/j.jfp.2022.100025.
Nath SS, Pandey C, Roy D. A near fatal case of high dose peppermint oil ingestion-Lessons learnt. Indian J Anaesth. 2012;56(6):582-584. DOI: 10.4103/0019-5049.104585.
Silva KF, Peruchetti DB, Sirtoli GM, Takiya CM, Pinheiro AAS, Leal-Cardoso JH, et al. High doses of essential oil of Croton zehntneri induces renal tubular damage. Plants. 2021;10(7):1400. DOI: 10.3390/plants10071400.
Wojtunik-Kulesza KA. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules. 2022;27(5):1716,1-19. DOI: 1420-3049/27/5/1716.
Sommano SR, Tangpao T. Aromatic profile of rhizomes from the ginger family used in food. In: CM Galanakis. Aromatic herbs in food. Elsevier; 2021. pp. 123-165.
Simoh S, Sew YS, Abd Rahim F, Ahmad MA, Zainal A. Comparative analysis of metabolites and antioxidant potentials from different plant parts of Curcuma aeruginosa Roxb. Sains Malaysiana. 2018;47(12):3031-3041. DOI: 10.17576/jsm-2018-4712-13.
Akarchariya N, Sirilun S, Julsrigival J, Chansakaowa S. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa Roxb., Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza Roxb. collected in Thailand. Asian Pac J Trop Biomed. 2017;7(10):881-885. DOI: 10.1016/j.apjtb.2017.09.009.
Sari YW, Nuzulia NA, Wahyuni WT, Bahtiar A, Saputra A, Subroto MHA, et al. Remineralization and antibacterial/antibiofilm effects of toothpaste containing nanohydroxyapatite and Curcuma aeruginosa extract. Nat Prod Res. 2022;36(17):4443-4447. DOI: 10.1080/14786419.2021.
Wahyuni WT, Batubara I, Tambunan DY. Antibacterial and teeth biofilm degradation activity of Curcuma aeruginosa essential oil. J Biol Sci. 2017;17(2):84-90. DOI: 10.3923/jbs.2017.84.90.
Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, et al. Curcuma Aeruginosa Roxb. extract inhibits the production of proinflammatory cytokines on raw 264.7 macrophages. Int J Appl Pharm. 2024;16(Special Issue 1):41-44. DOI: 10.22159/ijap.2024.v16s1.08
Agrawal S, Dhiman RK, Limdi JK. Evaluation of abnormal liver function tests. Postgrad Med J. 2016;92(1086):223-234. DOI: 10.1136/postgradmedj-2015-133715.
Groff K, Bachli E, Lansdowne M, Capaldo T. Review of evidence of environmental impacts of animal research and testing. Environments. 2014;1(1):14-30. DOI: 10.3390/environments1010014.
Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32(1):56-67.DOI: 10.1006/rtph.2000.1399.
Hübschmann HJ. Handbook of GC/MS: fundamentals and applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.; 2009. pp. 309-315.
Congiu R, Falconieri D, Marongiu B, Piras A, Porcedda S. Extraction and isolation of Pistacia lentiscus L. essential oil by supercritical CO2. Flavour Fragr J. 2002;17(4):239-344. DOI: 10.1002/ffj.1095.
Mardarowicz M, Wianowska D, Dawidowicz AL, Sawicki R. Comparison of terpene composition in engelmann spruce (Picea engelmannii) using hydrodistillation, SPME and PLE. Z Naturforsch C J Biosci. 2004;59(9-10):641-648. DOI: 10.1515/znc-2004-9-1006.
Hamm S, Bleton J, Tchapla A. Headspace solid phase microextraction for screening for the presence of resins in Egyptian archaeological samples. J Sep Sci. 2004;27(3):235-243. DOI: 10.1002/jssc.200301611.
Yu JQ, Liao ZX, Cai XQ, Lei JC, Zou GL. Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ Toxicol Pharmacol. 2007;23(2):162-167. DOI: 10.1016/j.etap.2006.08.004.
Silva DB, Pott A, Oliveira DCR. Analyses of the headspace volatile constituents of aerial parts (leaves and stems), flowers and fruits of Bidens gardneri Bak. and Bidens sulphurea (cav.) Sch.Bip. using solid-phase microextraction. J Essent Oil Res. 2010;22(6):560-563. DOI: 10.1080/10412905.2010.9700400.
Marongiu B, Piras A, Porcedda Si, Scorciapino A. Chemical composition of the essential oil and supercritical CO 2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J Agric Food Chem. 2005;53(20):7939-7943. DOI: 10.1021/jf051100x.
Andriamaharavo N. Retention Data. NIST Mass Spectrometry Data Center. [Internet]. 2014. Available from: https://webbook.nist.gov/cgi/cbook.cgi?ID=C20085852&Units=SI&Mask=2000#Gas-Chrom
Sadiah S, Syafii W, Sari RK, Sani Y, Alfarisi H, Andini HF, et al. Subchronic toxicity test of Strychnos ligustrina extract and dihydroartemisinin-piperaquine phosphate in male and female mice. J Appl Pharm Sci. 2023;13(4):220-230. DOI: 10.7324/JAPS.2023.36531.
Dubey VK, Madan S, Rajput SK, Singh AT, Jaggi M, Mittal AK. Single and repeated dose (28 days) intravenous toxicity assessment of bartogenic acid (an active pentacyclic triterpenoid) isolated from Barringtonia racemosa (L.) fruits in mice. Curr Res Toxicol. 2022;3:100057. DOI: 10.1016/j.crtox.2021.10.004.
Ugwah-Oguejiofor CJ, Okoli CO, Ugwah MO, Umaru ML, Ogbulie CS, Mshelia HE, et al. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N. E. Brown in mice and rats. Heliyon. 2019;5(1):e01179,1-20. DOI: 10.1016/j.heliyon.2019.e01179.
Kpemissi M, Metowogo K, Melila M, Veerapur VP, Negru M, Taulescu M, et al. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol Reports. 2020;7:162-168. DOI: 10.1016/j.toxrep.2020.01.007.
Roland L, Drillich M, Iwersen M. Hematology as a diagnostic tool in bovine medicine. J Vet Diagnostic Investig. 2014;26:592–8.DOI: 10.1177/1040638714546490.
Olayode OA, Daniyan MO, Olayiwola G. Biochemical, hematological and histopathological evaluation of the toxicity potential of the leaf extract of Stachytarpheta cayennensis in rats. J Tradit Complement Med. 2020;10(6):544-554. DOI: 10.1016/j.jtcme.2019.05.001.
Rivera AKB, Latorre AAE, Nakamura K, Seino K. Using complete blood count parameters in the diagnosis of iron deficiency and iron deficiency anemia in Filipino women. J Rural Med. 2023;18(2):2022-2047. DOI: 10.2185/jrm.2022-047.
Desalegn A, Mossie A, Gedefaw L. Nutritional iron deficiency anemia: magnitude and its predictors among school age children, Southwest Ethiopia: a community based cross-sectional study. PLoS One. 2014;9(12):e114059. DOI: 10.1371/journal.pone.0114059.
Pizzo F, Gadaleta D, Lombardo A, Nicolotti O, Benfenati E. Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem Cent J. 2015;9(1):62,1-11. DOI: 10.1186/s13065-015-0139-7.
Giannini EG. Liver enzyme alteration: a guide for clinicians. Can Med Assoc J. 2005;172(3):367-379. DOI: 10.1503/cmaj.1040752.
Zareei S, Boojar MMA, Amanlou M. Inhibition of liver alanine aminotransferase and aspartate aminotransferase by hesperidin and its aglycone hesperetin: an in vitro and in silico study. Life Sci. 2017;178:49-55. DOI: 10.1016/j.lfs.2017.04.001.
Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Prim. 2021;7(1):52. DOI: 10.1038/s41572-021-00284-z.
Hestianah EP, Kusumawati I, Suwanti LT. Toxic compounds of Curcuma aeruginosa causes necrosis of mice hepatocytes. Universa Med. 2014;33(2): 118-125.DOI: 10.18051/UnivMed.2014.v33.118-125.
Fajarwati I, Solihin DD, Wresdiyati T, Batubara I, Mariya SS. Antidiabetic Effects and Mechanisms of Action of Uncaria gambir Roxb. in Diabetic Sprague-Dawley Rats. J Am Assoc Lab Anim Sci. 2025; 64:35-43. DOI: 10.30802/AALAS-JAALAS-24-117
Jiang Z, Guo X, Zhang K, Sekaran G, Cao B, Zhao Q, et al. The essential oils and eucalyptol from Artemisia vulgaris L. prevent acetaminophen-induced liver injury by activating Nrf2–Keap1 and enhancing APAP clearance through non-toxic metabolic pathway. Front Pharmacol. 2019;10:782,1-15. DOI: 10.3389/fphar.2019.00782.
Palmieri S, Maggio F, Pellegrini M, Ricci A, Serio A, Paparella A, et al. Effect of the distillation time on the chemical composition, antioxidant potential and antimicrobial activity of essential oils from different Cannabis sativa L. cultivars. Molecules. 2021;26(16):4770. DOI: 10.3390/molecules26164770.
Fajarwati I, Solihin DD, Wresdiyati T. Gambier for diabetes: comparison of the antidiabetic potency between two types of extracts from Uncaria gambir (W. Hunter) Roxb. J Kefarmasian Indones. 2024;14(1):51-62. DOI: 10.22435/jki.v14i1.6621.
Refbacks
- There are currently no refbacks.
