Synthesis of thiosemicarbazone derivatives and evaluation of their cytotoxicity with emphasis on ferroptosis biomarkers; an in vitro study

Yasaman Shadmani, Yaghoub Pourshojaei , Somayyeh Karami-Mohajeri , Bagher Amirheidari, Motahareh Sadeghzadeh

Abstract


Background and purpose: This study aimed to evaluate the cytotoxicity of synthesized thiosemicarbazone derivatives, particularly on biomarkers associated with ferroptosis.

Experimental approach: Thiosemicarbazone derivatives (C1-C5) were synthesized by condensation between thiosemicarbazide and the corresponding benzaldehyde derivatives. The compounds were characterized using IR spectroscopy and H/C NMR spectroscopy. To evaluate their biological activity, PC-12 cells were cultured in DMEM/MEM medium supplemented with 10% bovine serum albumin. Cell viability was assessed using the MTT assay, while intracellular reactive oxygen species (ROS) levels were measured using DCFH-DA. Additionally, glutathione peroxidase (GPX) activity, lipid peroxidation (LPO), and total antioxidant capacity (TAC) were evaluated to determine oxidative stress and antioxidant response.

Findings/Results: In cell viability assessments, C2 exhibited the highest toxicity, while C4 demonstrated the lowest toxicity after 24 h. Among all derivatives, only C3 reduced ROS levels without affecting GPX activity. All derivatives effectively reduced LPO, although C5 showed the least effectiveness in this regard. In contrast to C2 and C5, TAC was significantly higher than the control after treatment with C1, C3, and C4.

Conclusion and implications: These findings suggest that thiosemicarbazone derivatives may influence the ferroptosis cell death pathway through their chelation properties, necessitating further research on their ability to bind to iron. Their effects on oxidative stress and cellular antioxidant capacity provide valuable insights for therapeutic strategies.

 

 


Keywords


Antioxidant capacity; Cytotoxicity; Ferroptosis; Iron chelators; Lipid peroxidation; Thiosemicarbazones.

Full Text:

PDF

References


Napotnik TB, Polajžer T, Miklavčič D. Cell death due to electroporation - a review. Bioelectrochemistry. 2021;141:107871. DOI: 10.1016/j.bioelechem.2021.107871.

Kopeina GS, Zhivotovsky B. Programmed cell death: past, present and future. Biochem Biophys Res Commun. 2022;633:55-58. DOI: 10.1016/j.bbrc.2022.09.022.

Lockshin RA, Williams CM. Programmed cell death, cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. J Insect Physiol.1965;11(2):123-133. DOI: 10.1016/0022-1910(65)90099-5.

Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics Br J Cancer.. 1972;26(4):239-257. DOI: 10.1038%2Fbjc.1972.33.

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541. DOI: 10.1038/s41418-017-0012-4.

Henke N, Albrecht P, Bouchachia I, Ryazantseva M, Knoll K, Lewerenz J, et al. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death Dis. 2013;4(1):e470,1-9. DOI: 10.1038/cddis.2012.216.

Dixon Scott J, Lemberg Kathryn M, Lamprecht Michael R, Skouta R, Zaitsev Eleina M, Gleason Caroline E, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.

Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020;30(6):478-490. DOI: 10.1016/j.tcb.2020.02.009.

Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266-282. DOI: 10.1038/s41580-020-00324-8.

Han C, Liu Y, Dai R, Ismail N, Su W, Li B. Ferroptosis and its potential role in human diseases. Front Pharmacol. 2020;11:239,1-19. DOI: 10.3389/fphar.2020.00239.

Zhang Y, Xin L, Xiang M, Shang C, Wang Y, Wang Y, et al. The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 2022;145:112423. DOI: 10.1016/j.biopha.2021.112423

Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, et al. Targeting ferroptosis to treat cardiovascular diseases: a new continent to be explored. Front Cell Dev Biol. 2021;9:737971. DOI: 10.3389/fcell.2021.737971.

Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj. 2019;1863(9):1398-1409. DOI: 10.1016/j.bbagen.2019.06.010.

Wu S, Li T, Liu W, Huang Y. Ferroptosis and cancer: complex relationship and potential application of exosomes. Front Cell Dev Biol. 2021;9:733751. DOI: 10.3389/fcell.2021.733751.

Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 2017;108(11):2187-2194. DOI: 10.1111/cas.13380.

Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 2021;81(2):355-69.e10. DOI: 10.1016/j.molcel.2020.11.024.

Lee JY, Kim WK, Bae KH, Lee SC, Lee EW. Lipid metabolism and ferroptosis. Biology. 2021;10(3):184,1-16.

DOI: 10.3390/biology10030184.

Li S, Zhang X. Iron in cardiovascular disease: challenges and potentials. Front Cardiovasc Med. 2021;8:707138. DOI: 10.3389/fcvm.2021.707138.

Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The clinical significance of iron overload and iron metabolism in myelodysplastic syndrome and acute myeloid leukemia. Front Immunol. 2021;11:627662. DOI: 10.3389/fimmu.2020.627662.

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduction Targeted Ther. 2021;6(1):49. DOI: 10.1038/s41392-020-00428-9.

Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem. 2021;159(5):804-825. DOI: 10.1111/jnc.15519.

Yiannikourides A, Latunde-Dada GO. A short review of iron metabolism and pathophysiology of iron disorders Medicines. 2019;6(3):85. DOI: 10.3390/medicines6030085.

Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1559S-1566S. DOI: 10.3945/ajcn.117.155804.

Salimi A, Sharif Makhmal Zadeh B, Kazemi M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Res Pharm Sci. 2019;14(4):293-307. DOI: 10.4103/1735-5362.263554.

Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res. 2003;531(1-2):81-92. DOI: 10.1016/j.mrfmmm.2003.08.004.

Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944-5972. DOI: 10.1021/cr200084z.

Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, Pratt DA. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3(3):232-243. DOI: 10.1021/acscentsci.7b00028.

Ratan RR. The chemical biology of ferroptosis in the central nervous system. Cell Chem Biol. 2020;27(5):479-498. DOI: 10.1016/j.chembiol.2020.03.007.

Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother. 2021;137:111380. DOI: 10.1016/j.biopha.2021.111380.

Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta Gen Subj.. 2009;1790(7):702-717. DOI: 10.1016/j.bbagen.2008.04.003.

Kaplancıklı ZA, Altıntop MD, Sever B, Cantürk Z, Özdemir A. Synthesis and in vitro evaluation of new thiosemicarbazone derivatives as potential antimicrobial agents. Chinese J Chem. 2016;2016:1692540,1-7. DOI: 10.1155/2016/1692540.

Shahlaei M, Fassihi A, Nezami A. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res Pharm Sci. 2009;4(2):123-131. PMID: 21589807.

Hassan M, Ghaffari R, Sardari S, Farahani YF, Mohebbi S. Discovery of novel isatin-based thiosemicarbazones: synthesis, antibacterial, antifungal, and antimycobacterial screening. Res Pharm Sci. 2020;15(3):281-290. DOI: 10.4103/1735-5362.288435.

Eslaminejad T, Pourshojaei Y, Naghizadeh M, Eslami H, Daneshpajouh M, Hassanzadeh A. Synthesis of some benzylidene thiosemicarbazide derivatives and evaluation of their cytotoxicity on U87, MCF-7, A549, 3T3 and HUVEC cell lines: scientific paper. J Serbian Chem Soc. 2022;87(10):1125-1142. DOI: 10.2298/JSC210630016E.

Soltani M, Karami-Mohajeri S, Ranjbar M, Ahmadi N, Jafari E, Mandegari A, et al. Reducing the cytotoxicity of magnesium oxide nanoparticles using cerium oxide shell coating: an in vitro and in vivo study. Ceram Int. 2023;49(9):14733-14743. DOI: 10.1016/j.ceramint.2023.01.069.

Manmuan S, Tubtimsri S, Chaothanaphat N, Issaro N, Tantisira MH, Manmuan P. Determination of the anticancer activity of standardized extract of Centella asiatica (ECa 233) on cell growth and metastatic behavior in oral cancer cells. Res Pharm Sci. 2024;19(2):121-147. DOI: 10.4103/rps.rps_81_23.

Sinaei N, Mirakabadi A, Jafari E, Karami-Mohajeri S. The cytotoxic effects of partially purified cytotoxic peptides of Naja naja Oxiana venom on human glioblastoma multiforme: an in vitro study. Int J Pept Res Ther. 2022;29,14. DOI: 10.1007/s10989-022-10479-x.

Ahmadipour A, Sharififar F, Pournamdari M, Mandegary A, Hosseini A, Afrapoli FM, et al. Hepatoprotective effect of Zataria multiflora Boiss against malathion-induced oxidative stress in male rats. Orient Pharm Exp Med. 2016;16(4): 287-293. DOI: 10.1007/s13596-016-0238-6.

Cheng Y, Song Y, Chen H, Li Q, Gao Y, Lu G, Luo C. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders. Oxid Med Cell Longev. 2021;2021:5005136. DOI: 10.1155/2021/5005136.

Qi F, Qi Q, Song J, Huang J. Synthesis, crystal structure, biological evaluation and in silico studies on novel (e)-1-(substituted benzylidene)-4-(3-isopropylphenyl)thiosemicarbazone derivatives. Chem Biodivers. 2021;18(2):e2000804,1-13. DOI: 10.1002/cbdv.202000804.

Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7-15. DOI: 10.1083/jcb.201102095.

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by gpx4 Cell. 2014;156(1-2):317-331. DOI: 10.1016/j.cell.2013.12.010.

Lane DJ, Merlot AM, Huang ML, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta. 2015;1853(5):1130-1144. DOI: 10.1016/j.bbamcr.2015.01.021.

Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289-3303. DOI: 10.1016/j.bbagen.2012.11.020.

Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol.1997;82(2):291-295.

DOI: 10.1113/expphysiol. 1997. sp004024.

Zhong Z, Zhong Z, Xing R, Li P, Mo G. The preparation and antioxidant activity of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone]-chitosan. Int J Biol Macromol. 2010;47(2):93-97. DOI: 10.1113/expphysiol. 1997. sp004024.

Yang L, Liu H, Xia D, Wang S. Antioxidant properties of camphene-based thiosemicarbazones: experimental and theoretical evaluation. Molecules. 2020;25(5):1192. DOI: 10.3390/molecules25051192.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.