Effect of resveratrol on key signaling pathways including SIRT1/AMPK/Smad3/TGF-β and miRNA-141 related to NAFLD in an animal model
Abstract
Background and purpose: Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic condition characterized by the accumulation of excess fat in the liver, which can ultimately lead to fibrosis and cirrhosis. This study investigated the impact of resveratrol on the signaling pathways miR-141/SIRT1/AMPK/TGF-β/Smad3 in fatty liver of male C57/BL6 mice.
Experimental approach: Twenty-one male C57/BL6 mice were acclimatized for 10 days and divided into 3 groups (n = 7), including control, NAFLD, and NAFLD + resveratrol groups. After an 8-week HFD to induce NAFLD, the mice were treated with resveratrol (100 mg/kg/day; oral gavage) for 8 weeks. At the end of the study (16 weeks), serum and liver tissue samples were collected. Gene expression was assessed using RT-PCR, while protein levels were analyzed via Western blotting. Statistical analysis was performed using SPSS 16.
Findings/Results: The results of the study showed that the expression levels of the genes Smad3 and miRNA-141 were significantly reduced in the resveratrol-treated group compared to the NAFLD group, while the expression levels of SIRT1 and TGF-β were significantly increased. In addition, the Western blot results indicated that the levels of the proteins P-AMPK and SIRT1 in the resveratrol-treated group were significantly higher compared to the NAFLD group. Furthermore, a significant reduction in fat accumulation and degeneration was observed in the histopathological findings of the liver in the resveratrol-treated group.
Conclusion and implications: The study concluded that resveratrol has the potential to reduce liver damage from NAFLD by modulating various signaling pathways, particularly TGF-β/Smad3, SIRT1/AMPK, and miRNA-141, leading to improved lipid metabolism and reduced hepatic steatosis. While the findings underscored the multifaceted therapeutic effects of resveratrol, further research and clinical trials are necessary to fully understand its mechanisms and applications in humans.
Keywords
Full Text:
PDFReferences
REFERENCES
Babaeenezhad E, Farahmandian N, Sotoudeheian M, Dezfoulian O, Askari E, Taghipour N, et al. Resveratrol relieves hepatic steatosis and enhances the effects of atorvastatin in a mouse model of NAFLD by regulating the renin‐angiotensin system, oxidative stress, and inflammation. Food Sci Nutr. 2025;13(3):e70073,1-12.DOI: 10.1002/fsn3.70073.
Lee ECZ, Anand VV, Razavi AC, Alebna PL, Muthiah MD, Siddiqui MS, et al. The global epidemic of metabolic fatty liver disease. Curr Cardiol Rep. 2024;26(4):199-210.DOI: 10.1007/s11886-024-02025-6.
Yarahmadi S, Farahmandian N, Fadaei R, Koushki M, Bahreini E, Karima S, et al. Therapeutic potential of resveratrol and atorvastatin following high-fat diet uptake-induced nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33. DNA Cell Biol. 2023;42(2):82-90.DOI: 10.1089/dna.2022.0581.
Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr. 2020;14(6):1875-1887.DOI: 10.1016/j.dsx.2020.09.026.
Benedict M, Zhang X. Non-alcoholic fatty liver disease: an expanded review. World J Hepatol. 2017;9(16):715-732.DOI: 10.4254/wjh.v9.i16.715.
Nassir F. NAFLD: mechanisms, treatments, and biomarkers. Biomolecules. 2022;12(6):824,1-32.DOI: 10.3390/biom12060824.
Wu Y, Liu X, Zhou Q, Huang C, Meng X, Xu F, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol. 2015;289(2):163-176.DOI: 10.1016/j.taap.2015.09.028.
Yadav H, Devalaraja S, Chung ST, Rane SG. TGF-β1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. J Biol Chem. 2017;292(8):3420-3432.DOI: 10.1074/jbc.M116.764910.
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675-690.DOI: 10.1016/j.cmet.2012.04.003.
He H, Zhong Y, Wang H, Tang PMK, Xue VW, Chen X, et al. Smad3 mediates diabetic dyslipidemia and fatty liver in db/db mice by targeting PPARδ. Int J Mol Sci. 2023;24(14):11396,1-19.DOI: 10.3390/ijms241411396.
Chen Q, Zeng Y, Yang X, Wu Y, Zhang S, Huang S, et al. Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyopathy. BMC Cardiovasc Disord. 2022;22(1):17,1-10.DOI: 10.1186/s12872-021-02401-y.
Yousefi Z, Nourbakhsh M, Abdolvahabi Z, Ghorbanhosseini SS, Hesari Z, Yarahmadi S, et al. microRNA‐141 is associated with hepatic steatosis by downregulating the sirtuin1/AMP‐activated protein kinase pathway in hepatocytes. J Cell Physiol. 2020;235(2):880-890.DOI: 10.1002/jcp.29002.
Wang S, Zhang M, Zhang T, Deng J, Xia X, Fang X. microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signaling pathway in endometriosis. Arch Gynecol Obstet. 2020;301(3):707-714.DOI: 10.1007/s00404-019-05429-w.
Faghihzadeh F, Hekmatdoost A, Adibi P. Resveratrol and liver: a systematic review. J Res Med Sci. 2015;20(8):797-810.DOI: 10.4103/1735-1995.168405.
Rashidi M, Afarin R, Kouchak M, Kabizadeh B, Shamsi M, Hatami M. Resveratrol and Saroglitazar: a promising combination for targeting TGF-β/Smad3 signaling and attenuating inflammatory response in nonalcoholic steatohepatitis in rats. Hepat Mon. 2023;23(1):1-12.DOI: 10.5812/hepatmon-138237.
Heebøll S, Thomsen KL, Pedersen SB, Vilstrup H, George J, Grønbæk H. Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease. World J Hepatol. 2014;6(4):188-198.DOI: 10.4254/wjh.v6.i4.188.
Cheng K, Song Z, Zhang H, Li S, Wang C, Zhang L, et al. The therapeutic effects of resveratrol on hepatic steatosis in high-fat diet-induced obese mice by improving oxidative stress, inflammation and lipid-related gene transcriptional expression. Med Mol Morphol. 2019;52(4):187-197.DOI: 10.1007/s00795-019-00216-7.
Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin. 2008;29(6):698-706.DOI: 10.1111/j.1745-7254.2008.00807.x.
Vyas M, Jain D. A practical diagnostic approach to hepatic masses. Indian J Pathol Microbiol. 2018;61(1):2-17.DOI: 10.4103/IJPM.IJPM_578_17.
Brunt EM. Nonalcoholic fatty liver disease: pros and cons of histologic systems of evaluation. Int J Mol Sci. 2016;17(1):97,1-10.DOI: 10.3390/ijms17010097.
Triki T, Boussora F, Drine S, Ali SB, Gasmi A, Marzougui LBN, et al. Stability analysis of reference genes for qPCR studies in Chenopodium quinoa ecotypes on salt-affected soils. Pol J Environ Stud. 2024;33(3):2823-2930.DOI: 10.15244/pjoes/172082.
Ho KH, Patrizi A. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep. 2021;11(1):3278,1-15.DOI: 10.1038/s41598-021-82800-5.
Nikroo H, Hosseini SRA, Fathi M, Sardar MA, Khazaei M. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiol Behav. 2020;227:113149,1-7.DOI: 10.1016/j.physbeh.2020.113149.
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9(4):327-338.DOI: 10.1016/j.cmet.2009.02.006.
Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem. 2011;286(29):25992-26002.DOI: 10.1074/jbc.M111.229401.
Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G833-G842.DOI: 10.1152/ajpgi.90358.2008.
Hu LK, Chen JQ, Zheng H, Tao YP, Yang Y, Xu XF. MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis. Exp Ther Med. 2021;22(6):1430,1-8.DOI: 10.3892/etm.2021.10865.
Ke W, Huang J, Zhong Y, Shi Y, Yan F, Huang D, et al. Hydroxypropyl-beta-cyclodextrin embedded resveratrol regulates gut microbiota to prevent NAFLD via activating AMPK signaling pathway. Food Biosci. 2023;54:102907.DOI: 10.1016/j.fbio.2023.102907.
Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55(8):2180-2191.DOI: 10.2337/db05-1188.
Alberdi G, Rodríguez VM, Macarulla MT, Miranda J, Churruca I, Portillo MP. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition. 2013;29(3):562-567.DOI: 10.1016/j.nut.2012.09.011.
Tian Y, Ma J, Wang W, Zhang L, Xu J, Wang K, et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem. 2016;422(1-2):75-84.DOI: 10.1007/s11010-016-2807-x.
Ahmed H, Umar MI, Imran S, Javaid F, Syed SK, Riaz R, et al. TGF-β1 signaling can worsen NAFLD with liver fibrosis backdrop. Exp Mol Pathol. 2022;124.DOI: 10.1016/j.yexmp.2021.104733.
Nair B, Nath LR. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J Recept Signal Transduct Res. 2020;40(3):195-200.DOI: 10.1080/10799893.2020.1726952.
Yamaguchi T, Yoshida K, Murata M, Suwa K, Tsuneyama K, Matsuzaki K, et al. Smad3 phospho-isoform signaling in nonalcoholic steatohepatitis. Int J Mol Sci. 2022;23(11):1-18.DOI: 10.3390/ijms23116270.
He H, Wang H, Chen X, Zhong Y, Huang XR, Ma RC, et al. Treatment for type 2 diabetes and diabetic nephropathy by targeting Smad3 signaling. Int J Biol Sci. 2024;20(1):200-217.DOI: 10.7150/ijbs.87820.
Liu J, Zhuo X, Liu W, Wan Z, Liang X, Gao S, et al. Resveratrol inhibits high glucose induced collagen upregulation in cardiac fibroblasts through regulating TGF-β1-Smad3 signaling pathway. Chem Biol Interact. 2015:227:45-52.DOI: 10.1016/j.cbi.2014.12.031.
Lim JY, Oh MA, Kim WH, Sohn HY, Park SI. AMP‐activated protein kinase inhibits TGF‐β‐induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J Cell Physiol. 2012;227(3):1081-1089.DOI: 10.1002/jcp.22824.
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol. 2021;254(4):358-373.DOI: 10.1002/path.5680.
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024;9(1):61,1-40.DOI: 10.1038/s41392-024-01764-w.
Roberts AB, McCune BK, Sporn MB. TGF-beta: regulation of extracellular matrix. Kidney Int. 1992;41(3):557-559. DOI: 10.1038/ki.1992.81.
Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004; 35(2):83-92. DOI: 10.1016/j.jdermsci.2003.12.006.
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: a recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol. 2022;237(1):59-85.DOI: 10.1002/jcp.30529.
Silva KAS, Freitas DF, Borém LMA, Oliveira LP, Oliveira JR, Paraíso AF, et al. Resveratrol attenuates non-alcoholic fatty liver disease in obese mice modulating MAF1. Revista Brasileira de Farmacognosia. 2022:1-10.DOI:10.1007/s43450-022-00309-y.
Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol. 2010;177(3):1065-1071.DOI: 10.2353/ajpath.2010.090923.
Andrade JMO, Paraíso AF, de Oliveira MVM, Martins AME, Neto JF, Guimarães ALS, et al. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition. 2014;30(7-8):915-919.DOI: 10.1016/j.nut.2013.11.016.
El-Lakkany NM, Seif El-Din SH, Abdel-Aal Sabra AN, Hammam OA, Abdel-Latif Ebeid F. Co-administration of metformin and N-acetylcysteine with dietary control improves the biochemical and histological manifestations in rats with non-alcoholic fatty liver. Res Pharm Sci. 2016; 11(5):374-382.DOI: 10.4103/1735-5362.192487.
Hamidi-Zad Z, Moslehi A, Rastegarpanah M. Attenuating effects of allantoin on the oxidative stress in a mouse model of nonalcoholic steatohepatitis: role of Sirt1/NRF2 Pathway. Res Pharm Sci, 2021;16(6):651-659.DOI: 10.4103/1735-5362.327511.
ShamsEldeen AM, Al‐Ani B, Ebrahim HA, Rashed L, Badr AM, Attia A, et al. Resveratrol suppresses cholestasis‐induced liver injury and fibrosis in rats associated with the inhibition of TGFβ1-Smad3-miR21 axis and profibrogenic and hepatic injury biomarkers. Clin Exp Pharmacol Physiol. 2021;48(10):1402-1411.DOI: 10.1111/1440-1681.13546.
Huang Y, Tong J, He F, Yu X, Fan L, Hu J, et al. miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med. 2015;35(2):311-318.DOI: 10.3892/ijmm.2014.2008.
Liang H, Wang X, Si C, Duan Y, Chen B, Liang H, et al. Downregulation of miR‑141 deactivates hepatic stellate cells by targeting the PTEN/AKT/mTOR pathway. Int J Mol Med. 2020;46(1):406-414.DOI: 10.3892/ijmm.2020.4578.
Kisková T, Kassayová M. Resveratrol action on lipid metabolism in cancer. Int J Mol Sci. 2019;20(11):2704,1-20.DOI: 10.3390/ijms20112704.
Refbacks
- There are currently no refbacks.
