Protective effects of curcumin/magnesium oxide nanoparticles on ketamine-induced neurotoxicity in the mouse hippocampus

Mahsa Salehirad , A. Wallace Hayes, Majid Motaghinejad , Mina Gholami

Abstract


Background and purpose: Nanotechnology can improve drug delivery by enhancing cell selectivity, releasing at specific target sites, and improving bioavailability while reducing adverse events and potential treatment costs. The current study aimed to synthesize curcumin/magnesium oxide (Cur/MgO) nanoparticles (NPs) and evaluate their neuroprotective effects in a mouse model of ketamine-induced neurotoxicity.

Experimental approach: XRD, FE-SEM, and a particle size analyzer determined the average crystalline and particle sizes. UV-Vis examined absorption patterns, and FT-IR spectroscopy analyzed the functional groups involved in the reaction. To evaluate the effectiveness of Cur/MgO NPs on ketamine-induced neurotoxicity, male BALB/c mice were divided into 7 groups and received the following treatments (intraperitoneally, daily for 2 weeks). Groups 1 and 2 received normal saline (0.2 mL) and ketamine (25 mg/kg). Group 3 received curcumin (40 mg/kg) and ketamine (25 mg/kg). Groups 4-6 received ketamine (25 mg/kg) and Cur/MgO NPs (10, 20, and 40 mg/kg). Group 7 received MgO (5 mg/kg) and ketamine (25 mg/kg). Finally, the hippocampal tissues were examined morphologically and analyzed for oxidative stress, inflammation, apoptotic markers, and mitochondrial quadruple complex enzymes.

Results/Findings: Both Cur/MgO NPs and curcumin reduced IL-1β, TNF-α, Bax, and MDA levels and GSSG content and increased GSH, Bcl-2, GPx, GR, and SOD. Cur/MgO NPs and curcumin also increased mitochondrial quadruple complex enzymes and inhibited histological changes in the dentate gyrus and CA1 hippocampus areas in ketamine-induced neurotoxicity.

Conclusion and implications: Cur/MgO NPs were more neuroprotective against the ketamine-induced histomorphological changes, inflammation, apoptosis, and oxidative stress than curcumin alone.

 

 


Keywords


Curcumin/magnesium oxide nanoparticles; Ketamine; Mouse hippocampus; Neurodegeneration.

Full Text:

PDF

References


Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65(1):21-23.DOI: 10.1016/j.addr.2012.04.010.

Freitas Jr RA. What is nanomedicine?Nanomedicine.2005;1(1):2-9.DOI: 10.1016/j.nano.2004.11.003.

Kesmati M, Konani M, Torabi M, Khajehpour L. Magnesium oxide nanoparticles reduce anxiety induced by morphine withdrawal in adult male mice. Physiol Pharmacol. 2016;20(3):197-205.

Mahmoud A, Ezgi Ö, Merve A, Özhan G. In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. Int J Toxicol. 2016;35(4):429-437.DOI: 10.1177/1091581816648624.

Kesmati M, Sargholi Notarki Z, Issapareh N, Torabi M. Comparison the effect of zinc oxide and magnesium oxide nano particles on long term memory in adult male mice. Zahedan J Res Med Sci. 2016;18:e3473,1-6.DOI: 10.17795/zjrms-3473.

Jahangiri L, Kesmati M, Najafzadeh H. Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci. 2013;17(20):2706-2710.PMID: 24174350.

Moeini-Nodeh S, Rahimifard M, Baeeri M, Abdollahi M. Functional improvement in rats’ pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways. Biol Trace Elem Res. 2017;175(1):146-155.DOI: 10.1007/s12011-016-0754-8.

Gazal M, Valente MR, Acosta BA, Kaufmann FN, Braganhol E, Lencina CL, et al. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur J Pharmacol. 2014;724:132-139.DOI: 10.1016/j.ejphar.2013.12.028.

Zhang X, Cui Y, Song X, Jin X, Sheng X, Xu X, et al. Curcumin alleviates ketamine‐induced oxidative stress and apoptosis via Nrf2 signaling pathway in rats' cerebral cortex and hippocampus. Environ Toxicol. 2023;38(2):300-311.DOI: 10.1002/tox.23697.

Mohammadi M, Abadi FS, Haddadi R, Nili-Ahmadabadi A. Antinociceptive and anti-inflammatory actions of curcumin and nano curcumin:a comparative study. Res Pharm Sci. 2023;18(6):604-613.DOI: 10.4103/1735-5362.389948.

Zamani E, Klour RA, Shekarsarayi AG, Ghazizadeh F, Evazalipour M. In vitro and in vivo assessment of indomethacin-induced genotoxicity: protection by curcumin. Res Pharm Sci. 2024;19(2):178-187.DOI: 10.4103/RPS.RPS_100_23.

Mobinhosseini F, Salehirad M, Wallace Hayes A, Motaghinejad M, Hekmati M, Safari S, et al. Curcumin‐ZnO conjugated nanoparticles confer neuroprotection against ketamine‐induced neurotoxicity. J Biochem Mol Toxicol. 2024;38(1):e23611.DOI: 10.1002/jbt.23611.

Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H. Curcumin as potential therapeutic natural product:a nanobiotechnological perspective. J Pharm Pharmacol. 2016;68(12):1481-1500.DOI: 10.1111/jphp.12611.

Sudakaran SV, Venugopal JR, Vijayakumar GP, Abisegapriyan S, Grace AN, Ramakrishna S. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. Mater Sci Eng C Mater Biol Appl. 2017;71:620-628.DOI: 10.1016/j.msec.2016.10.050.

Brietzke E, Mansur RB, Zugman A, Carvalho AF, Macêdo DS, Cha DS, et al. Is there a role for curcumin in the treatment of bipolar disorder?. Med Hypotheses. 2013;80(5):606-612.DOI: 10.1016/j.mehy.2013.02.001.

Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Therapeutic role of curcumin in prevention of biochemical and behavioral aberration induced by alcoholic neuropathy in laboratory animals. Neurosci Lett. 2012;511(1):18-22.DOI: 10.1016/j.neulet.2012.01.019.

Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application:a review. Molecules. 2020;25(6):1397,1-12.DOI: 10.3390/molecules25061397.

Das MK, Chakraborty T. Curcumin nano-theraputics for cancer chemotherapy: promises and challenges for the future. Eur J Pharm Med Res. 2016;3(3):177-1791.

Liu F, G Paule M, Ali S, Wang C. Ketamine-induced neurotoxicity and changes in gene expression in the developing rat brain. Curr Neuropharmacol. 2011;9(1):256-261.DOI: 10.2174/157015911795017155.

Cao Se, Tian J, Chen S, Zhang X, Zhang Y. Role of miR‐34c in ketamine‐induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int. 2015;39(2):164-168.DOI: 10.1002/cbin.10349.

Jiang S, Li X, Jin W, Duan X, Bo L, Wu J, et al. Ketamine-induced neurotoxicity blocked by N-Methyl-d-aspartate is mediated through activation of PKC/ERK pathway in developing hippocampal neurons. Neurosci Lett. 2018;673:122-131.DOI: 10.1016/j.neulet.2018.02.051.

Eneni A-EO, Ben-Azu B, Ajayi AM, Aderibibge AO. Lipopolysaccharide exacerbates ketamine-induced psychotic-like behavior, oxidative stress, and neuroinflammation in mice: ameliorative effect of diosmin. J Mol Neurosci. 2023;73(2):129-142.DOI: 10.1007/s12031-022-02077-9.

Ommati MM, Mobasheri A, Niknahad H, Rezaei M, Alidaee S, Arjmand A, et al. Low‐dose ketamine improves animals' locomotor activity and decreases brain oxidative stress and inflammation in ammonia‐induced neurotoxicity. J Biochem Mol Toxicol. 2023;37(11):e23468,1-10.DOI: 10.1002/jbt.23468.

Oshodi TO, Ben-Azu B, Ishola IO, Ajayi AM, Emokpae O, Umukoro S. Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice. Mol Biol Rep. 2021;48(3):2335-2350.DOI: 10.1007/s11033-021-06264-6.

Sassano‐Higgins S, Baron D, Juarez G, Esmaili N, Gold M. A review of ketamine abuse and diversion. Depress Anxiety. 2016;33(8):718-727.DOI: 10.1002/da.22536.

Bokor G, Anderson PD. Ketamine:an update on its abuse. J Pharm Pract. 2014;27(6):582-586.DOI: 10.1177/0897190014525754.

Lundberg M, Curbo S, Bohman H, Agartz I, Ögren SO, Patrone C, et al. Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy. Biosci Rep. 2020;40(1):1-11.DOI: 10.1042/BSR20193156.

Venkataramaiah C, Priya BL, Payani S, Pradeepkiran JA. Pharmacological potentiality of bioactive flavonoid against ketamine induced cell death of PC 12 cell lines:an in vitro study. Antioxidants (Basel). 2021;10(6):934,1-17.DOI: 10.3390/antiox10060934.

Adibipour F, Salehirad M, Hayes AW, Hekmati M, Motaghinejad M. Preventive effect of ZnO-metformin nanocomposite against carbon tetrachloride-induced hepatotoxicity. Nanomed Res J. 2024;9(2):155-163.DOI: 10.22034/nmrj.2024.02.004.

Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano‑copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sci. 2022; 292:120296.DOI: 10.1016/j.lfs.2021.120296.

Hettiarachchi SS, Dunuweera SP, Dunuweera AN, Rajapakse RMG. Synthesis of curcumin nanoparticles from raw turmeric rhizome. ACS Omega, 2021;6(12):8246-8252.DOI:10.1021/acsomega.0c06314.

Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577-1579.

DOI: 10.1111/j.1476-5381.2010.00872.x.

Shehata YM, Mansour M, Shadad S, Arisha A. Effect of curcumin-magnesium oxide nanoparticles conjugate in type-II diabetic rats. Adv Anim Vet Sci. 2020;8(s1):26-33.DOI:10.17582/journal.aavs/2020/8.s1.26.33.

Bose U, Broadbent JA, Juhász A, Karnaneedi S, Johnston EB, Stockwell S, et al. Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment. Food Chem. 2021;348:129110,1-11.DOI: 10.1016/j.foodchem.2021.129110.

Fernández-Vizarra E, Fernández-Silva P, Enríquez JA. Isolation of mitochondria from mammalian tissues and cultured cells. Cell Biol. 2006;2:69-77.DOI:10.1016/B978-012164730-8/50082-4.

Kruger NJ. The Bradford method for protein quantitation.Methods Mol Biol. 1994;32:9-15.DOI: 10.1385/0-89603-268-X:9.

Motaghinejad M, Motevalian M, Fatima S, Hashemi H, Gholami M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother. 2017;87:721-740.DOI: 10.1016/j.biopha.2016.12.020.

Motaghinejad M, Seyedjavadein Z, Motevalian M, Asadi M. The neuroprotective effect of lithium against high dose methylphenidate:possible role of BDNF. Neurotoxicology. 2016;56:40-54.DOI: 10.1016/j.neuro.2016.06.010.

Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol. 2015;29(3):299-309.DOI: 10.1111/fcp.12121.

Motaghinejad M, Motevalian M, Fatima S. Mediatory role of NMDA, AMPA/kainate, GABAA and Alpha2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci. 2017;179:37-53.DOI: 10.1016/j.lfs.2017.01.002.

Motaghinejad M, Motevalian M, Fatima S, Beiranvand T, Mozaffari S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J Neural Transm (Vienna). 2017;124(11):1369-1387.DOI: 10.1007/s00702-017-1771-2.

Motaghinejad M, Motevalian M, Falak R, Heidari M, Sharzad M, Kalantari E. Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala:the possible role of CREB/BDNF signaling pathway. J Neural Transm (Vienna). 2016;123(12):1463-1477.DOI: 10.1007/s00702-016-1619-1.

Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, et al. Minocycline acts as a neuroprotective agent against tramadol-induced neurodegeneration:behavioral and molecular evidence. Int J Prev Med. 2024;15:47,1-21.DOI: 10.4103/ijpvm.ijpvm_10_24.

Al Seyedan A, Dezfoulian O, Alirezaei M. Satureja khuzistanica Jamzad essential oil prevents doxorubicin-induced apoptosis via extrinsic and intrinsic mitochondrial pathways. Res Pharm Sci. 2020;15(5):481-490.DOI: 10.4103/1735-5362.297851.

Kirby DM, Thorburn DR, Turnbull DM, Taylor RW. Biochemical assays of respiratory chain complex activity. Methods Cell Biol. 2007;80:93-119.DOI: 10.1016/S0091-679X(06)80004-X.

Bénit P, Goncalves S, Dassa EP, Brière JJ, Martin G, Rustin P. Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. Clin Chim Acta. 2006;374(1-2):81-86.DOI: 10.1016/j.cca.2006.05.034.

Kim Suvarna S, Layton Ch, Bancroft JD. Bancroft’s Theory and Practice of Histological Techniques. In: Bancroft JD, Layton C. The hematoxylins and eosin. Bancroft’s theory and practice of histological techniques. Elsevier; 2012. pp. 126-138.DOI: 10.1016/C2015-0-00143-5.

Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655-658.DOI: 10.1101/pdb.prot073411.

Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10(9):1110-1115.DOI: 10.1038/nn1969.

Zheng X, Zhou J, Xia Y. The role of TNF-α in regulating ketamine-induced hippocampal neurotoxicity. Arch Med Sci. 2015;11(6):1296-1302.DOI: 10.5114/aoms.2015.56355.

Huang L, Liu Y, Jin W, Ji X, Dong Z. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCγ-ERK signaling pathway in the developing brain. Brain Res. 2012;1476:164-171.DOI: 10.1016/j.brainres.2012.07.059.

Jørum E, Warncke T, Stubhaug A. Cold allodynia and hyperalgesia in neuropathic pain: the effect of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine–a double-blind, cross-over comparison with alfentanil and placebo. Pain. 2003;101(3):229-235.DOI: 10.1016/S0304-3959(02)00122-7.

Powers III AR, Gancsos MG, Finn ES, Morgan PT, Corlett PR. Ketamine-induced hallucinations. Psychopathology. 2015;48(6):376-385.DOI: 10.1159/000438675.

Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105-125.DOI: 10.1007/978-0-387-46401-5_3.

Scapagnini G, Colombrita C, Amadio M, D'Agata V, Arcelli E, Sapienza M, et al. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal. 2006;8(3-4):395-403.DOI: 10.1089/ars.2006.8.395.

Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors. 2013;39(1):37-55.DOI: 10.1002/biof.1041.

Perez-Torres I, Ruiz-Ramirez A, Banos G, El-Hafidi M. Hibiscus Sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc Hematol Agents Med Chem. 2013;11(1):25-37.DOI: 10.2174/1871525711311010006.

Tiwari V, Chopra K. Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology (Berl). 2012;224(4):519-535.DOI: 10.1007/s00213-012-2779-9.

Lu HF, Yang JS, Lai KC, Hsu SC, Hsueh SC, Chen YL, et al. Curcumin-induced DNA damage and inhibited DNA repair genes expressions in mouse–rat hybrid retina ganglion cells (N18). Neurochem Res. 2009;34(8):1491-1497.DOI: 10.1007/s11064-009-9936-5.

Shehata Y, Mansour M, Shadad S, Metwally M, Arisha A. Anti-diabetic effects of curcumin-magnesium oxide nanoparticles conjugate in type 2 diabetic rats. Zagazig Vet J. 2020;48(3):263-272.DOI: 10.21608/zvjz.2020.23007.1098.

Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal–curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci. 2021;22(13):7094,1-24.DOI: 10.3390/ijms22137094.

Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin nanoformulations with metal oxide nanomaterials for biomedical applications. Nanomaterials (Basel). 2021;11(2):460,1-22.DOI: 10.3390/nano11020460.

Onaolapo A, Ayeni O, Ogundeji M, Ajao A, Onaolapo O, Owolabi A. Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: involvement of oxidative stress, glutamate toxicity and caspase-3-mediated apoptosis. J Chem Neuroanat. 2019;96:22-33.DOI: 10.1016/j.jchemneu.2018.12.002.

Li Y, Shen R, Wen G, Ding R, Du A, Zhou J, et al. Effects of ketamine on levels of inflammatory cytokines IL-6, IL-1β, and TNF-α in the hippocampus of mice following acute or chronic administration. Front Pharmacol. 2017;8:139,1-14.DOI: 10.3389/fphar.2017.00139.

Sun L, Li Q, Li Q, Zhang Y, Liu D, Jiang H, et al. Chronic ketamine exposure induces permanent impairment of brain functions in adolescent cynomolgus monkeys. Addict Biol. 2014;19(2):185-194.DOI: 10.1111/adb.12004.

Ding R, Li Y, Du A, Yu H, He B, Shen R, et al. Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models:another understanding of ketamine CNS toxicity. Sci Rep. 2016;6:38771,1-11.DOI: 10.1038/srep38771.

Sinner B, Friedrich O, Zink W, Zausig Y, Graf BM. The toxic effects of s (+)-ketamine on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+ oscillations. Anesth Analg. 2011;113(5):1161-1169.DOI: 10.1213/ANE.0b013e31822747df.

J Bosnjak Z, Yan Y, Canfield S, Y Muravyeva M, Kikuchi C, W Wells C, et al. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway. Curr Drug Saf. 2012;7(2):106-119.DOI: 10.2174/157488612802715663.

Slikker Jr W, Liu F, Rainosek SW, Patterson TA, Sadovova N, Hanig JP, et al. Ketamine-induced toxicity in neurons differentiated from neural stem cells. Mol Neurobiol. 2015;52(2):959-969.DOI: 10.1007/s12035-015-9248-5.

Félix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Monteiro SM, et al. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos. Chemosphere. 2018;201:730-739.DOI: 10.1016/j.chemosphere.2018.03.049.

Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg. 2013;116(4):869-880.DOI: 10.1213/ANE.0b013e3182860fc9.

Motaghinejad M, Motevalian M, Fatima S, Faraji F, Mozaffari S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB-BDNF signaling pathway. Neurochem Res. 2017;42(10):2921-2932.DOI: 10.1007/s11064-017-2323-8.

Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S. Protective effects of various dosage of curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep. 2015;67:230-235.DOI: 10.1016/j.pharep.2014.09.006.

Kandezi N, Mohammadi M, Ghaffari M, Gholami M, Motaghinejad M, Safari S. Novel insight to neuroprotective potential of curcumin: a mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/GSK3 or PI3/Akt/CREB/BDNF signaling pathways. Int J Mol Cell Med. 2020;9(1):1-32.DOI: 10.22088/IJMCM.BUMS.9.1.1

Motaghinejad M, Bangash MY, Hosseini P, Karimian SM, Motaghinejad O. Attenuation of morphine withdrawal syndrome by various dosages of curcumin in comparison with clonidine in mouse: possible mechanism. Iran J Med Sci. 2015;40(2): 125-132.PMID: 25821292.

Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40-59.DOI: 10.1016/j.biocel.2008.06.010.

Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol. 2007;595:197-212.DOI: 10.1007/978-0-387-46401-5_8.

Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs. 2012;21(8):1123-1140.DOI: 10.1517/13543784.2012.693479.

Huang HC, Chang P, Dai XL, Jiang ZF. Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage. Neurochem Res. 2012;37(7):1584-1597.DOI: 10.1007/s11064-012-0754-9.

Huang HC, Xu K, Jiang ZF. Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis. 2012;32(4):981-096.DOI: 10.3233/JAD-2012-120688.

Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, et al. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res. 2014;39(7):1322-1331.DOI: 10.1007/s11064-014-1315-1.

Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, et al. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8(39):66680-66698.

DOI: 10.18632/oncotarget.19164.

Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014;2014:394264,1-23.DOI: 10.1155/2014/394264.

Yu Y, Shen Q, Lai Y, Park SY, Ou X, Lin D, et al. Anti-inflammatory effects of curcumin in microglial cells. Front Pharmacol. 2018;9:386,1-10.DOI: 10.3389/fphar.2018.00386.

Shehzad A, Rehman G, Lee YS. Curcumin in inflammatory diseases. Biofactors. 2013;39(1):69-77.DOI: 10.1002/biof.1066.

Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors. 2020;46(1):5-20.DOI: 10.1002/biof.1566.

Trujillo J, Granados‐Castro LF, Zazueta C, Andérica‐Romero AC, Chirino YI, Pedraza‐Chaverrí J. Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim). 2014;347(12):873-884.DOI: 10.1002/ardp.201400266.

Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Kumar NVA, Martins N, et al. The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem. 2019;163:527-545.DOI: 10.1016/j.ejmech.2018.12.016.

Mohseni M, Sahebkar A, Askari G, Johnston TP, Alikiaii B, Bagherniya M. The clinical use of curcumin on neurological disorders: an updated systematic review of clinical trials. Phytother Res. 2021;35(12):6862-6882.DOI: 10.1002/ptr.7273.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.