Repurposing FDA-approved drugs to find a novel inhibitor of alpha-ketoglutarate-dependent dioxygenase FTO to treat esophageal cancer

Zeinab Mohammadi , Marie Saghaeian Jazi, Seyyed Mehdi Jafari, Seyyed Mostafa Mir, Jahanbakhsh Asadi, Massoud Amanlou

Abstract


Background and purpose: The Fat mass and obesity-associated protein (FTO) plays a significant role in esophageal cancer by regulating N6-methyladenosine (m6A) modification. FTO inhibition has shown potential in cancer therapies but remains underexplored. This study aimed to identify a safer, FDA-approved compound for FTO inhibition that can be used in combination with chemotherapy drugs.

Experimental approach: FDA-approved drugs were screened from the Zinc15 database using AutoDock Vina against the 3D structure of FTO (PDB ID: 3LFM). Discovery Studio software was used to determine binding interactions. The GROMACS package was used for molecular dynamics simulations. A non-toxic concentration was determined through an MTT assay on KYSE-30 esophageal cancer cells. The ELISA assay was used to measure the m6A levels in RNA.

Findings/Results: Four compounds, ergotamine, midazolam, digoxin, and loratadine, were identified. Loratadine (ΔG: -8.9) formed stable interactions with FTO, specifically with residues Ser229, Tyr109, Leu109, Val229, and His231. Molecular dynamic simulations of the FTO-loratadine complex revealed higher RMSD fluctuations (0.4-0.6 nm), but the system remained stable overall. RMSF analysis showed similar fluctuation patterns in all three systems, indicating that loratadine did not affect protein structure stability. MM/PBSA calculations revealed powerful binding energy for the FTO-loratadine complex (-135.73 kJ/mol), driven by favorable van der Waals interactions. KYSE-30 cells treated with loratadine (100 μM), m6A levels in KYSE-30 cells compared to the control group were significantly elevated at a non-toxic concentration.

Conclusion and implications: Loratadine is a promising, low-toxic FTO inhibitor that could complement chemotherapy for esophageal cancer.


Keywords


AutoDock Vina; Drug repurposing; Esophageal cancer; Fat mass and obesity associated protein; Molecular dynamics simulation; N6-methyl adenosine.

Full Text:

PDF

References


Maity A, Das B. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. FEBS J. 2016;283(9):1607-1630.DOI: 10.1111/febs.13614.

Roundtree IA, Evans. ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187-1200.DOI: 10.1016/j.cell.2017.05.045.

Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Nati Acad Sci. 2016;113(49):14013-14018.DOI: 10.1073/pnas.1614759113.

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA n6-adenosine methylation. Nat Chem Biol. 2014;10(2):93-95.DOI: 10.1038/nchembio.1432.

Meyer KD, Jaffrey SR. Rethinking m6a readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017;33(1):319-342.DOI: 10.1146/annurev-cellbio-100616-060758.

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885-887.DOI: 10.1038/nchembio.687.

Zheng G, Dahl JA, Niu. Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18-29.DOI: 10.1016/j.molcel.2012.10.015.

Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, et al. The biological function of m6a demethylase alkbh5 and its role in human disease. Cancer Cell Int. 2020;20(1):347,1-7.DOI: 10.1186/s12935-020-01450-1.

Wojtaz. M. Pandey RR, Mendel. M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m6A transcripts by the 3'→5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol Cell. 2017;68(2):374-387.DOI: 10.1016/j.molcel.2017.09.021.

Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724-726.DOI: 10.1038/ng2048.

Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG. FTO and obesity: mechanisms of association. Curr Diab Rep. 2014;14(5):486,1-9.DOI: 10.1007/s11892-014-0486-0.

Qing Y, Dong L, Gao L, Li C, Li Y, Han L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the fto/m6a/pfkp/ldhb axis. Mol Cell. 2021;81(5):922-939.e9.DOI: 10.1016/j.molcel.2020.12.026.

Wang L, Song C, Wang N, Li S, Liu Q, Sun Z, et al. NADP modulates RNA m6a methylation and adipogenesis via enhancing FTO activity. Nat Chem Biol. 2020;16(12):1394-1402.DOI: 10.1038/s41589-020-0601-2.

Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, et al. RNA m6a methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543(7646):573-5766.DOI: 10.1038/nature21671.

Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with irx3. Nature. 2014;507(7492):371-375.DOI: 10.1038/nature13138.

Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA Signaling. Cell. 2018;172(1-2):90-105.e23.DOI: 10.1016/j.cell.2017.11.031.

Duan X, Yang L, Wang L, Liu Q, Zhang K, Liu S, et al. M6a demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci. 2022;12(1):60,1-14.DOI: 10.1186/s13578-022-00798-3.

Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y, et al. RNA m6a demethylase FTO-mediated epigenetic up-regulation of linc00022 promotes tumorigenesis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2021;40(1):294,1-20.DOI: 10.1186/s13046-021-02096-1.

Liu S, Huang M, Chen Z, Chen J, Chao Q, Yin X, Quan M. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res. 2020;389(1),111894,1-8.DOI: 10.1016/j.yexcr.2020.111894.

B. Singh, Kinne HE, Milligan RD, Washburn LJ, Olsen M, Lucci A. Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS One 2016;11(7),1-20.DOI: 10.1371/journal.pone.0159072.

Tan NN, Tang HL, Lin GW, Chen YH, Lu P, Li HJ, et al. Epigenetic downregulation of Scn3a expression by valproate: a possible role in its anticonvulsant activity. Mol Neurobiol. 2017;54(4):2831-2842.DOI: 10.1007/s12035-016-9871-9.

Toh JDW, Sun L, Lau LZM, Tan J, Low JJA, Tang CWQ, et al. A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of n6-methyladenosine demethylase FTO. Chem Sci. 2015;6:112-122.DOI: 10.1039/c4sc02554g.

Padariya M, KalathiaU. Structure-based design and evaluation of novel n-phenyl-1H-indol-2-amine derivatives for fat mass and obesity-associated (FTO) protein inhibition. Comput Biol Chem. 2016;64:414-425.DOI: 10.1016/j.compbiolchem.2016.09.008.

Rui S, Dong L, Li Y, Gao M, Han L, Wanderlich M, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38(1):79-96.DOI: 10.1016/j.ccell.2020.04.017.

He W, Zhou B, Liu W, Zhang M, Shen Z, Han Z, et al. Identification of a novel small-molecule binding site of the fat mass and obesity associated protein (FTO). J Med Chem. 2015;58(18):7341-7348.DOI: 10.1021/acs.jmedchem.5b00702.

Alimardan Z, Abbasi M, Khodarahmi G, Kashfi K, Hasanzadeh F, Mahmud A. Identification of new small molecules as dual Foxm1 and hsp70 inhibitors using computational methods. Res Pharm Sci. 2022;17(6):635-656.DOI: 10.4103/1735-5362.359431.

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41-58.DOI: 10.1038/nrd.2018.168.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791.DOI: 10.1002/jcc.21256.

Azizian HN, Nabati F, Sharifi A, Siavoshi F, Mahdavi M. Amanlou, M. Large-scale virtual screening for the identification of new Helicobacter pylori urease inhibitor scaffolds. J Mol Model. 2012;18(7):2917-2927.DOI: 10.1007/s00894-011-1310-2.

Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.DOI: 10.1002/jcc.21334.

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR."Open babel: An open chemical toolbox." J Cheminf. 2011;3:33,1-14.DOI: 10.1186/1758-2946-3-33.

Lindahl A, Hess, & van der Spoel. Gromacs 2021 manual (version 2021). Zenodo 2021.DOI: 10.5281/zenodo.4457591.

Der Spoel DV, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. Gromacs: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-1718.DOI: 10.1002/jcc.20291.

Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50(5):1055-1076.DOI: 10.1080/00268978300102851.

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52(2):255-268.DOI: 10.1080/00268978400101201.

Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys 1985;31(3):1695-1697.DOI: 10.1103/physreva.31.1695.

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684-3690.DOI: 10.1063/1.448118.

Beutler TC, Van Gunsteren WF. Molecular dynamics simulations with first-order coupling to a bath of constant chemical potential. Molecular Simulation. 1994;14(1):21-34.DOI: 10.1080/08927029408022005.

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh ewald method. J Chem Phys. 1995;103(19):8577-8593.DOI: 10.1063/1.470117.

van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-245.DOI: 10.1007/978-1-61779-080-5_20.

Taghvaei F, Rastin SJ, Milani AT, Khameneh ZR, Hamini F, Rasouli MA, et al. Carboplatin and epigallocatechin-3-gallate synergistically induce cytotoxic effects in esophageal cancer cells. Res Pharm Sci. 2021;16(3):240-249.DOI: 10.4103/1735-5362.314822.

Rio DC, Ares Jr M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protoc. 2010;2010(6):1-70.DOI: 10.1101/pdb.prot5439.

Ramedani F, Jafari SM, Saghaeian Jazi M, Mohammadi Z, Asadi J. Anti-cancer effect of entacapone on esophageal cancer cells via apoptosis induction and cell cycle modulation. Cancer Reports (Hoboken, NJ). 2023;6(3):e1759,1-8.DOI: 10.1002/cnr2.1759.

Iorga B, Herlem D, Barré E, Guillou C. Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the "blind docking" approach. J Mol Model. 2006;12(3):366-372.DOI: 10.1007/s00894-005-0057-z.

Hetényi C, van der Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 2006;580(5):1447-1450.DOI: 10.1016/j.febslet.2006.01.074.

You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, et al. Recent advances of m6A demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci. 2022;23(10):1-28.DOI: 10.3390/ijms23105815.

Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature. 2010;464(7292):1205-1209.DOI: 10.1038/nature08921.

Li Q, Huang Y, Liu X, Gan J, Chen H, Yang CG. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage. J Biol Chem. 2016;291(21):11083-11093.DOI: 10.1074/jbc.M115.711895.

Trott O, Olsen AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2): 455-461.DOI: 10.1002/jcc.21334.

Jaghoori MM, Bleijlevens B, Olabarriaga SD. 1001 ways to run autodock vina for virtual screening. J Comput Aided Mol Des. 2016;30(3):237-249.DOI: 10.1007/s10822-016-9900-9.

Wang RY, Han ZF, Liu BJ, Zhou B, Wang N, Jiang QW, et al. Identification of natural compound radicicol as a potent FTO inhibitor. Mol Pharm. 2018;15(9):4092-4098.DOI: 10.1021/acs.molpharmaceut.8b00522.

Li H, Song Y, He Z, Chen X, Wu X, Li X, et al. Meclofenamic acid reduces reactive oxygen species accumulation and apoptosis, inhibits excessive autophagy, and protects hair cell-like HEI-OC1 cells from cisplatin-induced damage. Front Cell Neurosci. 2018;12:139,1-12.DOI: 10.3389/fncel.2018.00139.

Hashemi S, Sharifi A, Zareei S, Mohamedi G, Biglar M, Amanlou M. Discovery of direct inhibitor of KRAS oncogenic protein by natural products: a combination of pharmacophore search, molecular docking, and molecular dynamic studies. Res Pharm Sci. 2020;15(3):226-240.DOI: 10.4103/1735-5362.288425.

Sargsyan K, Grauffel C, Lim C. How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theory Comput. 2017;13(4):1518-1524.DOI: 10.1021/acs.jctc.7b00028.

Knapp B, Frantal S, Cibena M, Schreiner W, Bauer P. Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible? J Comput Biol. 2011;18(8):997-1005.DOI: 10.1089/cmb.2010.0237.

Berger MB, Walker AR, Montelongo EA, Cisneros GA. Computational investigations of selected enzymes from two iron and α-ketoglutarate-dependent families. Physi Chem Chem Phys. 2021;39:1-16.DOI: 10.48550/arXiv.2108.10959.

Kumar SU, Rajan B, Kumar DT, Cathryn RH, Das Sth S, Zayed H, et al. Comparison of potential inhibitors and targeting fat mass and obesity‐associated protein causing diabesity through docking and molecular dynamics strategies. J Cell Biochem. 2021:122(11):1625-1638.DOI: 10.1002/jcb.30109.

Bopp P. Molecular dynamics computer simulations of solvation in hydrogen bonded systems. Pure App Chem. 1987;59(9):1071-1082.

Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a n6-methyladenosine RNA demethylase. Cancer cell. 2017;31(1):127-141.DOI: 10.1016/j.ccell.2016.11.017.

Qiao Y, Zhou B, Zhang MZ, Liu WJ, Han ZF, Song CJ, et al. A novel inhibitor of the obesity-related protein FTO. Biochemistry. 2016;55(10):1516-1522.DOI: 10.1021/acs.biochem.6b00023.

Hotta K, Kitamoto T, Kitamoto A, Mizusawa S, Matsuo T, Nakata Y, et al. Association of variations in the FTO, SCG3 and MTMR9 genes with metabolic syndrome in a Japanese population. J Hum Genet. 2011;56(9):647-651.DOI: 10.1038/jhg.2011.74.

Qin B, Bai Q, Yan D, Yin F, Zhu Z, Xia C, et al. Discovery of novel mRNA demethylase FTO inhibitors against esophageal cancer. J Enzyme Inhibit Med Chem. 2022;37(1):1995-2003.DOI: 10.1080/14756366.2022.2098954.

Yang Z, Yu GL, Zhu X, Peng TH, Lv YC. Critical roles of FTO-mediated mRNA m6a demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis. 2022;9(1):51-61.DOI: 10.1016/j.gendis.2021.01.005.

Zhang B, Jiang H, Wu J, Cai Y, Dong Z, Zhao Y, et al. M6a demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther. 2021;6(1):377,1-3.DOI: 10.1038/s41392-021-00699-w.

Ben-Haim MS, Moshitch-Moshkovitz S, Rechavi G. FTO: linking m6a demethylation to adipogenesis. Cell Res. 2015;25(1):3-4.DOI: 10.1038/cr.2014.162.

Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, et al. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Nat Acad Sci. 2019;116(36):17980-17989.DOI: 10.1073/pnas.1905489116.

Wu Y, Li J, Li C, Lu S, Wei X, Li Y, et al. Fat mass and obesity-associated factor (FTO)-mediated n6-methyladenosine regulates spermatogenesis in an age-dependent manner. J Biol Chem. 2023;299(6):104783,1-12.DOI: 10.1016/j.jbc.2023.104783.

Qiu W, Zhou Y, Wu H, Lv X, Yang L, Ren Z, et al. RNA demethylase FTO mediated RNA m6A modification is involved in maintaining maternal-fetal interface in spontaneous abortion. Front Cell Dev Biol. 2021;9:617172,1-13.DOI: 10.3389/fcell.2021.617172.

Tenn MW, Steacy LM, Ng CC, Ellis AK. Onset of action for loratadine tablets for the symptomatic control of seasonal allergic rhinitis in adults challenged with ragweed pollen in the environmental exposure unit: a post hoc analysis of total symptom score. Allergy Asthma Clin Immunol. 2018;14:5,1-7.DOI: 10.1186/s13223-017-0227-4.

Barenholtz HA, McLeod DC. Loratadine: a nonsedating antihistamine with once-daily dosing. DICP. 1989;23(6):445-450.DOI: 10.1177/106002808902300601.

Xie GY, Wu XN, Ling YY, Rui YL, Wu DY, Zhou JW, et al. A novel inhibitor of n-6-methyladenosine demethylase fto induces mRNA methylation and shows anti-cancer activities. Acta Pharm Sin B. 2022;12(2):853-866.DOI: 10.1016/j.apsb.2021.08.028.

Zheng GQ, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. Acs Chem Neurosci. 2014;5(8):658-665.DOI: 10.1021/cn500042t.

Su R, Dong L, Li YC, Han L, Gao M, Wunderlich M, et al. Effective novel FTO inhibitors show potent anti-cancer efficacy and suppress drug resistance. Blood. 2019;134(1):1-5.DOI: 10.1182/blood-2019-124535.

Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X, et al. Development of cell-active n6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963-17971.DOI: 10.1021/ja3064149.

Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6a over alkbh5. Nucleic Acids Res. 2015;43(1):373-84.DOI: 10.1093/nar/gku1276.

Wang T, Hong T, Huang Y, Su H, Wu F, Chen Y, et al. Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc. 2015;137(43):13736-13739.DOI: 10.1021/jacs.5b06690.

Peng S, Xiao W, Ju D, Sun B, Hou N, Liu Q, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through Foxo1. Sci TranslMed. 2019;11(488):eaau7116,1-12.DOI: 10.1126/scitranslmed.aau7116.

Han X, Wang N, Li J, Wang Y, Wang R, Chang J. Identification of nafamostat mesilate as an inhibitor of the fat mass and obesity-associated protein (FTO) demethylase activity. Chem Biol Interact. 2019;297:80-84.DOI: 10.1016/j.cbi.2018.10.023.

Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM. M(6)A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol. 2021;16(2):324-333.DOI: 10.1021/acschembio.0c00841.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.