A comprehensive bioinformatics analysis of fatty acid metabolism-associated genes in the diagnosis and prognosis of head and neck squamous cell carcinoma

Shirin Alsadat Hashemi Fesharaki , Sara Kiani Abari, Behnaz Yazdani, Hadi Farajollahi, Fatemeh Padidari Kalashami, Anahita Zadsar, Hajar Sirous

Abstract


Background and purpose: One of the most prevalent types of malignancies affecting the cells in the mucosal surface of the oral cavity and pharynx regions is head and neck squamous cell carcinoma (HNSCC). This study analyzed the metabolic profile of genes involved in the metabolism of fatty acids (FAs) to identify biomarkers with prognostic and diagnostic potential in HNSCC.

Experimental approach: Gene set enrichment analysis, differential gene expression, and correlation analysis methods were used to examine the enrichment and expression patterns of genes involved in the metabolism of FAs in the HNSCC tissue samples. Gene ontology and network analysis were performed to explore the molecular interactions in the metabolic pathways of FAs. The diagnostic and prognostic potentials of identified highly dysregulated genes in HNSCC were examined by ROC test and Cox-regression methods.

Findings/Results: FA-associated metabolic pathways were significantly dysregulated in the HNSC cancer samples. For the diagnosis of HNSC cancer, CYP4B1 and FMO2 could be potential biomarkers, while for the prognosis of HNSCC survival periods, ACOX2, CYP4F12, and ELOVL6 could hold valuable biomarker potential.

Conclusion and implications: The findings could help target the metabolism of FAs using the identified biomarkers for the design of new therapeutic opportunities for patients with HNSCC.

 

 


Keywords


CYP4B1; Diagnosis; ELOVL6; Fatty acid metabolism; FMO2; Head and neck squamous cell carcinoma; Prognosis.

Full Text:

PDF

References


Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.DOI: 10.3322/caac.21660.

Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233(9):780-786.DOI: 10.1038/s41415-022-5166-x.

Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92,1-49. DOI: 10.1038/s41572-020-00224-3.

Currie E, Schulze A, Zechner R, Walther TC, Farese Jr RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153-161.DOI: 10.1016/j.cmet.2013.05.017.

Locasale JW, Cantley LC. Altered metabolism in cancer. BMC Biol. 2010;8:88,1-3.DOI: 10.1186/1741-7007-8-88.

Long J, Zhang CJ, Zhu N, Du K, Yin YF, Tan X, Liao DF, Qin L. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res. 2018;8(5):778-791.PMID: 29888102.

Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab. 2021;9(1):2,1-28.DOI: 10.1186/s40170-020-00237-2.

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4-22.DOI: 10.1038/s41416-019-0650-z.

Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245-293.DOI: 10.1016/j.addr.2020.07.013.

Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52(4):585-589.DOI: 10.1016/j.plipres.2013.08.005.

Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1):57-71.DOI: 10.1016/j.ccell.2014.12.002.

Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM, et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014;9(1):349-365.DOI: 10.1016/j.celrep.2014.08.056.

Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, et al. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett. 2018;435:92-100.DOI: 10.1016/j.canlet.2018.08.006.

Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol. 2016;97:15-21.DOI: 10.1016/j.critrevonc.2015.10.011.

Chen M, Huang J. The expanded role of fatty acid metabolism in cancer: new aspects and targets. Precis Clin Med. 2019;2(3):183-191.DOI: 10.1093/pcmedi/pbz017.

Liu Q, Luo Q, Halim A, Song G. Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett. 2017; 401:39-45.DOI: 10.1016/j.canlet.2017.05.002.

Chen, T, Li, H. Fatty acid metabolism and prospects for targeted therapy of cancer. Eur. J Lipid Sci Technol.2017;119(10):1600366,1-21.DOI: 10.1002/ejlt.201600366.

Su YW, Wu PS, Lin SH, Huang WY, Kuo YS, Lin HP. Prognostic value of the overexpression of fatty acid metabolism-related enzymes in squamous cell carcinoma of the head and neck. Int J Mol Sci. 2020;21(18):6851,1-13.DOI: 10.3390/ijms21186851.

Tripathi P, Kamarajan P, Somashekar BS, MacKinnon N, Chinnaiyan AM, Kapila YL, et al. Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A2, a potential therapeutic target. Int J Biochem Cell Biol. 2012;44(11):1852-1861.DOI: 10.1016/j.biocel.2012.06.025.

Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, et al. Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer. 2011;117(13):2926-2938.DOI: 10.1002/cncr.25868.

Hsieh YT, Chen YF, Lin SC, Chang KW, Li WC. Targeting cellular metabolism modulates head and neck oncogenesis. Int J Mol Sci. 2019;20(16):3960, 1-26.DOI: 10.3390/ijms20163960.

R core team. R: a language and environment for statistical computing. 2023. R foundation for statistical computing, Vienna, Austria, availeble on https://www.R-project.org.

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71,1-11.DOI: 10.1093/nar/gkv1507.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140. DOI: 10.1093/bioinformatics/btp616.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991-995.DOI: 10.1093/nar/gks1193.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.DOI: 10.1073/pnas.0506580102.

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739-1740.DOI: 10.1093/bioinformatics/btr260.

Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci. 2023;18(4):413-429.DOI: 10.4103/1735-5362.378088.

Yazdani B, Sirous H. Expression analysis of HIF-3α as a potent prognostic biomarker in various types of human cancers: a case of meta-analysis. Res Pharm Sci. 2022;17(5):508-526.DOI: 10.4103/1735-5362.355210.

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258-261.DOI: 10.1093/nar/gkg034.

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D612.DOI: 10.1093/nar/gkaa1074.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.DOI: 10.1101/gr.1239303.

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2(10):2366-2382.DOI: 10.1038/nprot.2007.324.

Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015; 127:67-72.DOI: 10.1016/j.biosystems.2014.11.005.

Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015; 127:67-72. DOI: 10.1016/j.biosystems.2014.11.005.

Touzet H, Perriquet O. CARNAC: folding families of related RNAs. Nucleic Acids Res. 2004;32(Web Server issue):W142-W145.DOI: 10.1093/nar/gkh415.

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.PMID: 12734009.

Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science. 2016;2:e67,1-20.DOI: 10.7287/peerj.preprints.1780v1.

Benítez-Parejo N, Rodríguez del Águila MM, Pérez-Vicente S. Survival analysis and Cox regression. Allergol Immunopathol (Madr). 2011;39(6):362-373.DOI: 10.1016/j.aller.2011.07.007.

Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91-101.PMID: 12539951.

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-D361. DOI: 10.1093/nar/gkw1092.

Cohen N, Fedewa S, Chen AY. Epidemiology and demographics of the head and neck cancer population. Oral Maxillofac Surg Clin North Am. 2018;30(4):381-395.DOI: 10.1016/j.coms.2018.06.001.

Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9-22.DOI: 10.1038/nrc2982.

Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021;218(1):e20201606,1-17.DOI: 10.1084/jem.20201606.

Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of lipid metabolism in cancer: implications in prognosis and treatment. Front Oncol. 2020; 10:577420,1-24. DOI: 10.3389/fonc.2020.577420.

Zhang F, Du G. Dysregulated lipid metabolism in cancer. World J Biol Chem. 2012;3(8):167-174.DOI: 10.4331/wjbc.v3.i8.167.

Munir R, Lisec J, Swinnen JV, Zaidi N. Lipid metabolism in cancer cells under metabolic stress. Br J Cancer. 2019;120(12):1090-1098.DOI: 10.1038/s41416-019-0451-4.

Hour TC, Kuo YZ, Liu GY, Kang WY, Huang CY, Tsai YC, et al. Downregulation of ABCD1 in human renal cell carcinoma. Int J Biol Markers. 2009;24(3):171-178.DOI: 10.1177/172460080902400307.

Liu X, Jia Y, Shi C, Kong D, Wu Y, Zhang T, et al. CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma. PLoS One. 2021;16(2):e0247020,1-15.DOI: 10.1371/journal.pone.0247020.

Baer BR, Rettie AE. CYP4B1: an enigmatic P450 at the interface between xenobiotic and endobiotic metabolism. Drug Metab Rev. 2006;38(3):451-476.DOI: 10.1080/03602530600688503.

Lim S, Alshagga M, Ong CE, Chieng JY, Pan Y. Cytochrome P450 4B1 (CYP4B1) as a target in cancer treatment. Hum Exp Toxicol. 2020;39(6):785-796.DOI: 10.1177/0960327120905959.

Imaoka S, Yoneda Y, Sugimoto T, Hiroi T, Yamamoto K, Nakatani T, et al. CYP4B1 is a possible risk factor for bladder cancer in humans. Biochem Biophys Res Commun. 2000;277(3):776-780.DOI: 10.1006/bbrc.2000.3740.

Jiang JH, Jia WH, Qin HD, Liang H, Pan ZG, Zeng YX. [Expression of cytochrome P450 enzymes in human nasopharyngeal carcinoma and non-cancerous nasopharynx tissue]. Ai Zheng. 2004;23(6):672-677.PMID: 15191668.

Fialka F, Gruber RM, Hitt R, Opitz L, Brunner E, Schliephake H, et al. CPA6, FMO2, LGI1, SIAT1 and TNC are differentially expressed in early- and late-stage oral squamous cell carcinoma--a pilot study. Oral Oncol. 2008;44(10):941-948.DOI: 10.1016/j.oraloncology.2007.10.011.

Yu S, Yang R, Xu T, Li X, Wu S, Zhang J. Cancer-associated fibroblasts-derived FMO2 as a biomarker of macrophage infiltration and prognosis in epithelial ovarian cancer. Gynecol Oncol. 2022;167(2):342-353.DOI: 10.1016/j.ygyno.2022.09.003.

Wu L, Chu J, Shangguan L, Cao M, Lu F. Discovery and identification of the prognostic significance and potential mechanism of FMO2 in breast cancer. Aging (Albany NY). 2023;15(21):12651-12673.DOI: 10.18632/aging.205204.

Gong X, Hou D, Zhou S, Tan J, Zhong G, Yang B, et al. FMO family may serve as novel marker and potential therapeutic target for the peritoneal metastasis in gastric cancer. Front Oncol. 2023;13:1144775,1-12.DOI: 10.3389/fonc.2023.1144775.

Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica. 2020;50(1):19-33.DOI: 10.1080/00498254.2019.1643515.

Bu W, Liu R, Cheung-Lau JC, Dmochowski IJ, Loll PJ, Eckenhoff RG. Ferritin couples iron and fatty acid metabolism. FASEB J. 2012;26(6):2394-2400.DOI: 10.1096/fj.11-198853.

Källner K, Krook R, Sandberg AS, Hulthén L, Andersson-Hall U, Holmäng A. Interaction of iron homeostasis and fatty acid metabolism in the development of glucose intolerance in women with previous gestational diabetes mellitus. Nutrients. 2023;15(14):3214,1-12.DOI: 10.3390/nu15143214.

Hyde CA, Missailidis S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol. 2009;9(6):701-715.DOI: 10.1016/j.intimp.2009.02.003.

Yang P, Cartwright CA, Li J, Wen S, Prokhorova IN, Shureiqi I, et al. Arachidonic acid metabolism in human prostate cancer. Int J Oncol. 2012;41(4):1495-1503.DOI: 10.3892/ijo.2012.1588.

Xu C, Gu L, Hu L, Jiang C, Li Q, Sun L, et al. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer. Nat Commun. 2023;14(1):2042,1-15.DOI: 10.1038/s41467-023-37590-x.

Chen X, Sood S, Yang CS, Li N, Sun Z. Five-lipoxygenase pathway of arachidonic acid metabolism in carcino-genesis and cancer chemoprevention. Curr Cancer Drug Targets. 2006;6(7):613-622.DOI: 10.2174/156800906778742451.

Hartley A, Ahmad I. The role of PPARγ in prostate cancer development and progression. Br J Cancer. 2023;128(6):940-945.DOI: 10.1038/s41416-022-02096-8.

Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother. 2023;161:114420,1-14.DOI: 10.1016/j.biopha.2023.114420.

Burotto M, Szabo E. PPARγ in head and neck cancer prevention. Oral Oncol. 2014;50(10):924-929.DOI: 10.1016/j.oraloncology.2013.12.020.

Zhang Q, Zhang Y, Sun S, Wang K, Qian J, Cui Z, et al. ACOX2 is a prognostic marker and impedes the progression of hepatocellular carcinoma via PPARα pathway. Cell Death Dis. 2021;12(1):15,1-12.DOI: 10.1038/s41419-020-03291-2.

Sui JSY, Martin P, Keogh A, Murchan P, Ryan L, Nicholson S, et al. Altered expression of ACOX2 in non-small cell lung cancer. BMC Pulm Med. 2022;22(1):321,1-21.DOI: 10.1186/s12890-022-02115-7.

Bjørklund SS, Kristensen VN, Seiler M, Kumar S, Alnæs GI, Ming Y, et al. Expression of an estrogen-regulated variant transcript of the peroxisomal branched chain fatty acid oxidase ACOX2 in breast carcinomas. BMC Cancer. 2015;15:524,1-13.DOI: 10.1186/s12885-015-1510-8.

Jia W, Chen S, Wei R, Yang X, Zhang M, Qian Y, et al. CYP4F12 is a potential biomarker and inhibits cell migration of head and neck squamous cell carcinoma via EMT pathway. Sci Rep. 2023;13(1):10956,1-16.DOI: 10.1038/s41598-023-37950-z.

Feng YH, Chen WY, Kuo YH, Tung CL, Tsao CJ, Shiau AL, et al. Elovl6 is a poor prognostic predictor in breast cancer. Oncol Lett. 2016;12(1):207-212.DOI: 10.3892/ol.2016.4587.

Tian X, Li S, Ge G. Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res. 2021;13:1333-1342.DOI: 10.2147/CMAR.S274631.

Li H, Wang X, Tang J, Zhao H, Duan M. Decreased expression levels of ELOVL6 indicate poor prognosis in hepatocellular carcinoma. Oncol Lett. 2019;18(6):6214-6220.DOI: 10.3892/ol.2019.10974.

Wang R, Liu X, Li X, Qian M, Yang X, Jiang Q, et al. ELOVL6 promotes the progression of head and neck squamous cell carcinoma via activating WNT/β-catenin pathway. Mol Carcinog. 2024;63(6): 1079-1091.DOI: 10.1002/mc.23710.

Krishna S, Brown N, Faller DV, Spanjaard RA. Differential effects of short-chain fatty acids on head and neck squamous carcinoma cells. Laryngoscope. 2002;112(4):645-650.DOI: 10.1097/00005537-200204000-00010.

Xiao C, Fedirko V, Claussen H, Richard Johnston H, Peng G, Paul S, et al. Circulating short chain fatty acids and fatigue in patients with head and neck cancer: a longitudinal prospective study. Brain Behav Immun. 2023;113:432-443.DOI: 10.1016/j.bbi.2023.07.025.

Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91(3):386-396.DOI: 10.1016/j.mayocp.2015.12.017.

Alfouzan AF. Radiation therapy in head and neck cancer. Saudi Med J. 2021;42(3):247-254.DOI: 10.15537/smj.2021.42.3.20210660.

Ove R, Nabell LM. Induction chemotherapy for head and neck cancer: is there still a role? Future Oncol. 2016;12(13):1595-1608.DOI: 10.2217/fon-2016-0073.

Moon C, Chae YK, Lee J. Targeting epidermal growth factor receptor in head and neck cancer: lessons learned from cetuximab. Exp Biol Med (Maywood). 2010;235(8):907-920.DOI: 10.1258/ebm.2009.009181.

Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther. 2023;8(1):31,1-28.DOI: 10.1038/s41392-022-01297-0.

Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol. 2015;33(29):3293-3304.DOI: 10.1200/JCO.2015.61.1509.

Psyrri A, Fountzilas G. Advances in the treatment of locally advanced non-nasopharyngeal squamous cell carcinoma of the head and neck region. Med Oncol. 2006;23(1):1-15.DOI: 10.1385/MO:23:1:1.

Pryor DI, Solomon B, Porceddu SV. The emerging era of personalized therapy in squamous cell carcinoma of the head and neck. Asia Pac J Clin Oncol. 2011;7(3):236-251.DOI: 10.1111/j.1743-7563.2011.01420.x.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.