Klotho microinjection into the RVLM attenuates acute kidney injury via interaction with the cholinergic anti-inflammatory pathway in rats
Abstract
Background and purpose: The Klotho (Klo) gene, an aging suppressor in rats, accelerates aging when disrupted and extends lifespan when overexpressed. It encodes a transmembrane protein primarily expressed in renal tubules. This study investigated the protective effects of central Klo, both alone and in combination with cholinergic anti-inflammatory pathway (CAP) inhibition, against ischemia-reperfusion injury (IRI)-induced acute kidney injury. The current study evaluated the expression of inflammatory and anti-inflammatory genes (including Il1b, Tnfa, Tgfb, Trem2, and Il10) in the kidney, alongside plasma levels of creatinine (Cr), blood urea nitrogen (BUN), and signs of acute tubular injury.
Experimental approach: Klo was microinjected into the rostral ventrolateral medulla, and CAP inhibition was achieved through intraperitoneal administration of mecamylamine (Mec). Real-time RT-PCR and hematoxylin and eosin staining were used for gene expression analysis and histopathological examination, respectively.
Findings/Results: The results showed elevated Cr and BUN levels, tubular injury, and increased inflammatory gene expression in IRI and IRI + Mec groups, as well as reduced Il10 in the IRI + Mec group. Klo exhibited protective effects. Elevated Tgfb expression was seen in IRI + Klo and IRI + Mec + Klo groups one week post-surgery.
Conclusion and implications: These findings indicated Klo potential to extend lifespan and protect against age-related diseases, including kidney disease and inflammation, via neural modulation of peripheral immunity.
Keywords
Full Text:
PDFReferences
Dolegowska K, Marchelek-Mysliwiec M, Nowosiad-Magda M, Slawinski M, Dolegowska B. FGF19 subfamily members: FGF19 and FGF21. J Physiol Biochem. 2019;75(2):229-240.DOI: 10.1007/s13105-019-00675-7.
Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655-8665.DOI: 10.1074/jbc.M110.174037.
Shin IS, Shin HK, Kim JC, Lee MY. Role of Klotho, an anti-aging protein, in pulmonary fibrosis. Arch Toxicol. 2015;89(5):785-795.DOI: 10.1007/s00204-014-1282-y.
Oshima N, Onimaru H, Yamagata A, Ito S, Imakiire T, Kumagai H. Rostral ventrolateral medulla neuron activity is suppressed by Klotho and stimulated by FGF23 in newborn Wistar rats. Auton Neurosci. 2020;224:102640,1-10.DOI: 10.1016/j.autneu.2020.102640.
Reisi P, Rashidi B, Arabpour Z, Shabrang M, Hamidi G. Effects of erythropoietin on neuronal apoptosis and neurogenesis in hippocampal dentate gyrus in the rat model of Alzheimer’s disease. Res Pharm Sci. 2012;7(5):1026.
Luo K, Lim SW, Quan Y, Cui S, Shin YJ, Ko EJ, et al. Role of klotho in chronic calcineurin inhibitor nephropathy. Oxid Med Cell Longev. 2019;2019:1-7.DOI: 10.1155/2019/1825018.
Kuriyama N, Ozaki E, Mizuno T, Ihara M, Mizuno S, Koyama T, et al. Association between α-Klotho and deep white matter lesions in the brain: a pilot case-control study using brain MRI. J Alzheimer's Dis. 2018;61(1):145-155.DOI: 10.3233/JAD-170466.
Song J, Lee M, Kim Y, Park S, Kim J, Ryu S, et al. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells. Eur J Histochem. 2014;58(1):19-26.DOI: 10.4081/ejh.2014.2256.
Zhu L, Stein LR, Kim D, Ho K, Yu GQ, Zhan L, et al. Klotho controls the brain-immune system interface in the choroid plexus. Proc Natl Acad Sci U S A. 2018;115(48):E11388-E11396.DOI: 10.1073/pnas.1808609115.
Hu MC, Shi M, Cho HJ, Zhang J, Pavlenco A, Liu S, et al. The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int. 2013;84(3):468-481.DOI: 10.1038/ki.2013.149.
Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci U S A. 2007;104(7):2331-2336.DOI: 10.1073/pnas.0611079104.
Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol. 2012;8(7):423-429.DOI: 10.1038/nrneph.2012.92.
Hegde A, Denburg MR, Glenn DA. Acute kidney injury and pediatric bone health. Front pediatr. 2021;8:635628,1-7.DOI: 10.3389/fped.2020.635628.
Hu MC, Kuro-o M, Moe OW. Klotho and kidney disease. J Nephrol. 2010;23(Suppl 16):S136-S144.PMID: 21170871.
Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47-63.DOI: 10.1159/000346778.
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204-7218.DOI: 10.18632/oncotarget.23208.
Rostami S, Emami-Aleagha MS, Ghasemi-Kasman M, Allameh A. Cross-talks between the kidneys and the central nervous system in multiple sclerosis. Caspian J Intern Med. 2018;9(3):206-219.DOI: 10.22088/cjim.9.3.206.
de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol. 2007;151(7):915-929.DOI: 10.1038/sj.bjp.0707264.
Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res. 2012;35(2):132-141.DOI: 10.1038/hr.2011.208.
Zhang ZH, Wei SG, Francis J, Felder RB. Cardiovascular and renal sympathetic activation by blood-borne TNF-α in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R916-R927.DOI: 10.1152/ajpregu.00406.2002.
Guyenet PG, Stornetta RL, Holloway BB, Souza GM, Abbott SB. Rostral ventrolateral medulla and hypertension. Hypertens. 2018;72(3):559-566.DOI: 10.1161/HYPERTENSIONAHA.118.10921.
Barta P, Monti J, Maass PG, Gorzelniak K, Müller DN, Dechend R, et al. A gene expression analysis in rat kidney following high and low salt intake. J Hypertens. 2002;20(6):1115-1120.DOI: 10.1097/00004872-200206000-00022.
Amohashemi E, Alaei H, Reisi P. Effects of GABAB receptor blockade on lateral habenula glutamatergic neuron activity following morphine injection in the rat: an electrophysiological study. Res Pharm Sci. 2023;18(1):16-23.DOI: 10.4103/1735-5362.363592.
Jokar Z, Khatamsaz S, Alaei H, Shariati M. The electrical stimulation of the central nucleus of the amygdala in combination with dopamine receptor antagonist reduces the acquisition phase of morphine-induced conditioned place preference in male rats. Res Pharm Sci. 2023;18(4):430-438.DOI: 10.4103/1735-5362.378089.
Sumitra M, Manikandan P, Rao KVK, Nayeem M, Manohar BM, Puvanakrishnan R. Cardiorespiratory effects of diazepam-ketamine, xylazine-ketamine and thiopentone anesthesia in male Wistar rats-a comparative analysis. Life Sci. 2004;75(15):1887-1896.DOI: 10.1016/j.lfs.2004.05.009.
Aboul-Fotouh S. Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology. 2015;232(6):1095-1105.DOI: 10.1007/s00213-014-3745-5.
Golab F, Kadkhodaee M, Zahmatkesh M, Hedayati M, Arab H, Schuster R, et al. Ischemic and non-ischemic acute kidney injury causes hepatic damage. Kidney Int. 2009;75(8):783-792.DOI: 10.1038/ki.2008.683.
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Elsevier; 2006. pp. 136-137.
Landry T, Laing BT, Li P, Bunner W, Rao Z, Prete A, et al. Central α-Klotho suppresses NPY/AgRP neuron activity and regulates metabolism in mice. Diabetes. 2020;69(7):1368-1381.DOI: 10.2337/db19-0941.
Chen LJ, Cheng MF, Ku PM, Lin JW. Rosiglitazone increases cerebral klotho expression to reverse baroreflex in type 1-like diabetic rats. Biomed Res Int. 2014;2014:309151,1-9.DOI: 10.1155/2014/309151.
Oshima N, Onimaru H, Yamagata A, Ito S, Imakiire T, Kumagai H. Rostral ventrolateral medulla neuron activity is suppressed by Klotho and stimulated by FGF23 in newborn Wistar rats. Auton Neurosci. 2020;224:102640,1-10.DOI: 10.1016/j.autneu.2020.102640.
Baluchnejadmojarad T, Eftekhari SM, Jamali-Raeufy N, Haghani S, Zeinali H, Roghani M. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson's disease: involvement of PKA/CaMKII/CREB signaling. Exp Gerontol. 2017;100:70-76.DOI: 10.1016/j.exger.2017.10.023.
Landry T, Li P, Shookster D, Jiang Z, Li H, Laing BT, et al. Centrally circulating α-klotho inversely correlates with human obesity and modulates arcuate cell populations in mice. Mol Metab. 2021;44:101136,1-15.DOI: 10.1016/j.molmet.2020.101136.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408.DOI: 10.1006/meth.2001.1262.
Andrade L, Rodrigues CE, Gomes SA, Noronha IL. Acute kidney injury as a condition of renal senescence. Cell Transplant. 2018;27(5):739-753.DOI: 10.1177/0963689717743512.
Wang Q, Su W, Shen Z, Wang R. Correlation between soluble α-Klotho and renal function in patients with chronic kidney disease: a review and meta-analysis. Biomed Res Int. 2018;2018:1-12.DOI: 10.1155/2018/9481475.
Maeda A, Hayase N, Doi K. Acute kidney injury induces innate immune response and neutrophil activation in the lung. Front Med. 2020;7:565010,1-5.DOI: 10.3389/fmed.2020.565010.
Reisi P, Eidelkhani N, Rafiee L, Kazemi M, Radahmadi M, Alaei H. Effects of doxepin on gene expressions of Bcl-2 family, TNF-α, MAP kinase 14, and Akt1 in the hippocampus of rats exposed to stress. Res Pharm Sci. 2017;12(1):15-20.DOI: 10.4103/1735-5362.199042.
Junaid A, Rosenberg M, Hostetter T. Interaction of angiotensin II and TGF-beta 1 in the rat remnant kidney. J Am Soc Nephrol. 1997;8(11):1732-1738.DOI: 10.1681/ASN.V8111732.
Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK. IL-10 attenuates TNF-α-induced NFκB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res. 2009;82(1):59-66.DOI: 10.1093/cvr/cvp040.
Sopjani M, Alesutan I, Dërmaku-Sopjani M, Gu S, Zelenak C, Munoz C, et al. Regulation of the Na+/K+ ATPase by klotho. FEBS Lett. 2011;585(12):1759-1764.DOI: 10.1016/j.febslet.2011.05.021
Hering L, Rahman M, Potthoff SA, Rump LC, Stegbauer J. Role of α2-adrenoceptors in hypertension: focus on renal sympathetic neurotransmitter release, inflammation, and sodium homeostasis. Front Physiol. 2020;11:566871,1-11.DOI: 10.3389/fphys.2020.566871.
Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016;7(1): 13035,1-13.DOI: 10.1038/ncomms13035.
Hering L, Rahman M, Hoch H, Markó L, Yang G, Reil A, et al. α2A-adrenoceptors modulate renal sympathetic neurotransmission and protect against hypertensive kidney disease. J Am Soc Nephrol. 2020;31(4):783-798.DOI: 10.1681/ASN.2019060599.
Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ−/− and interleukin-17A−/− mice. Hypertension. 2015;65(3):569-576.DOI: 10.1161/HYPERTENSIONAHA.114.04975.
Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126(1):50-67.DOI: 10.1172/JCI80761.
Chernyavsky AI, Arredondo J, Skok M, Grando SA. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. Int Immunopharmacol. 2010;10(3):308-315.DOI: 10.1016/j.intimp.2009.12.001.
Piovesana R, Salazar Intriago MS, Dini L, Tata AM. Cholinergic modulation of neuroinflammation: focus on α7 nicotinic receptor. Int J Mol Sci. 2021;22(9):4912,1-12.DOI: 10.3390/ijms22094912.
Bonaz B, Sinniger V, Pellissier S. Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with Covid-19? Bioelectron Med. 2020;6(1):15,1-7.DOI: 10.1186/s42234-020-00051-7.
Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, et al. Cholinergic signaling via the α7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation. 2024;21(1):3,1-17.DOI: 10.1186/s12974-023-03001-7.
Báez-Pagán CA, Delgado-Vélez M, Lasalde-Dominicci JA. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J Neuroimmune Pharmacol. 2015;10(3):468-476.DOI: 10.1007/s11481-015-9601-5.
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, et al. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation. 2023;20(1):84,1-19.DOI: 10.1186/s12974-023-02768-z.
Lv J, Ji X, Li Z, Hao H. The role of the cholinergic anti-inflammatory pathway in autoimmune rheumatic diseases. Scand J Immunol. 2021;94(4):e13092, 1-12.DOI: 10.1111/sji.13092.
Halder N, Lal G. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol. 2021;12: 660342,1-29.DOI: 10.3389/fimmu.2021.660342.
Inoue T, Abe C, Kohro T, Tanaka S, Huang L, Yao J, et al. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney Int. 2019;95(3):563-576.DOI: 10.1016/j.kint.2018.09.020.
Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335-346.DOI: 10.1038/nrn1902.
Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, et al. Role of Klotho in the development of essential hypertension. Hypertension. 2021;77(3):740-750.DOI: 10.1161/HYPERTENSIONAHA.120.16635.
Refbacks
- There are currently no refbacks.
