Synthesis and in vitro evaluation of novel pH-triggered biocompatible folate-chondroitin sulfate-dexamethasone copolymers for delivery of tofacitinib in rheumatoid arthritis
Abstract
Background and purpose: Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with systemic complications and progressive disability. Systemic side effects and poor drug delivery to joints limit current treatments. This study aimed to enhance the efficacy of tofacitinib (Tofa) by synthesizing novel pH-triggered biocompatible polymers, both folate-targeted and non-folate-targeted.
Experimental approach: First-generation polymers were synthesized and characterized using FT-IR and 1H-NMR spectroscopy. The critical micelle concentration of the copolymers was evaluated, and Tofa-loaded micelles were prepared using the dialysis method. The physical properties of the micelles were assessed using FE-SEM and dynamic light scattering. Cytotoxicity of Tofa/ chondroitin sulfate-maleic-dexamethasone (Tofa/CHS-Mal-DEX) and Tofa/folic acid-polyethylene glycol-chondroitin sulfate-maleic-dexamethasone (Tofa/FA-PEG-CHS-Mal-DEX) micelles was evaluated on the fibroblastic L929 and RAW264.7. The cellular uptake and anti-inflammatory effects were investigated in the activated Raw 264.7 cell line.
Findings/Results: Tofa/CHS-Mal-DEX and Tofa/FA-PEG-CHS-Mal-DEX micelles exhibited particle sizes of 188 nm and 173.06 nm, respectively, with entrapment efficiencies of 51% and 72.76%. The release profiles exhibited that about 40% of Tofa was released from micelles over 62 h in physiological pH, whereas in acidic conditions, this significantly decreased to 2 h. Micelles demonstrated improved uptake efficiency, resulting in a significant reduction in IL-6 levels compared to free Tofa. None of the micelle formulations indicated cytotoxic effects on fibroblastic L929 and Raw 264.7 macrophage cell lines.
Conclusion and implications: The developed folate and non-folate-targeted micelles were not toxic and biocompatible for enhancing the therapeutic potential of Tofa in RA and improving drug delivery.
Keywords
Full Text:
PDFReferences
Fauci AS, Langford C. Rheumatoid arthritis. harrisons rheumatology. New York, United States: McGraw-Hill Education;2013.
Emami J, Kazemi M, Salehi A. In vitro and in vivo evaluation of two hydroxychloroquine tablet formulations: HPLC assay development. J Chromatogr Sci. 2021;59(1):71-8.DOI: 10.1093/chromsci/bmaa079
Feng X, Chen Y. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target. 2018;26(10):845-857.DOI: 10.1080/1061186X.2018.1433680.
Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR. Kelley's textbook of Rheumatology E-Book: Elsevier Health Sciences; 2012. pp. 1116-1137.
Singh H, Dan A, Kumawat MK, Pawar V, Chauhan DS, Kaushik A, et al. Pathophysiology to advanced intra-articular drug delivery strategies: Unravelling rheumatoid arthritis. Biomaterials. 2023;303:122390.DOI: 10.1016/j.biomaterials.2023.122390
Strand V, Kremer J, Wallenstein G, Kanik KS, Connell C, Gruben D, et al. Effects of tofacitinib monotherapy on patient-reported outcomes in a randomized phase 3 study of patients with active rheumatoid arthritis and inadequate responses to DMARDs. Arthritis Res Ther. 2015; 17:307,1-12.DOI: 10.1186/s13075-015-0825-9.
Wallenstein GV, Kanik KS, Wilkinson B, Cohen S, Cutolo M, Fleischmann R, et al. Effects of the oral Janus kinase inhibitor tofacitinib on patient-reported outcomes in patients with active rheumatoid arthritis: results of two Phase 2 randomised controlled trials. Clin Exp Rheumatol. 2016;34(3):430-442.PMID: 27156561.
Yu RH, Li X, DuBois D, Almon R, Cao Y, Jusko W. Interactions of tofacitinib and dexamethasone on lymphocyte proliferation. Pharm Res. 2020;37(6):105,1-9.DOI: 10.1007/s11095-020-02827-7.
Yu R, Song D, DuBois DC, Almon RR, Jusko WJ. Modeling combined anti-inflammatory effects of dexamethasone and tofacitinib in arthritic rats. AAPS J. 2019;21(5):93,1-19.DOI: 10.1208/s12248-019-0362-6.
Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv. 2022;4(17):3479-3494.DOI: 10.1039/d2na00229a.
Siddiqui B, Ur Rehman A, Gul R, Chaudhery I, Shah KU, Ahmed N. Folate decorated chitosan-chondroitin sulfate nanoparticles loaded hydrogel for targeting macrophages against rheumatoid arthritis. Carbohydr Polym. 2024;327:121683.DOI: 10.1016/j.carbpol.2023.121683.
Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64(12):1205-1219.DOI: 10.1016/j.addr.2012.03.006.
Emami J, Ansarypour Z. Receptor targeting drug delivery strategies and prospects in the treatment of rheumatoid arthritis. Res Pharm Sci. 2019;14(6):471-487.DOI: 10.4103/1735-5362.272534.
Ahn J, Miura Y, Yamada N, Chida T, Liu X, Kim A, et al. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials. 2015;39:23-30.DOI: 10.1016/j.biomaterials.2014.10.069.
Wang Z, Zhan C, Zeng F, Wu S. A biopolymer-based and inflammation-responsive nanodrug for rheumatoid arthritis treatment via inhibiting JAK-STAT and JNK signalling pathways. Nanoscale. 2020;12(45):23013-23027.
Zhang N, Xu C, Li N, Zhang S, Fu L, Chu X, et al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation. Drug Deliv. 2018;25(1):1182-1191.DOI: 10.1080/10717544.2018.1472677.
Naor D, Nedvetzki S. CD44 in rheumatoid arthritis. Arthritis Res Ther. 2003;5(3):105-115.DOI: 10.1186/ar746.
Gorantla S, Gorantla G, Saha RN, Singhvi G. CD44 receptor-targeted novel drug delivery strategies for rheumatoid arthritis therapy. Expert Opin Drug Deliv. 2021;18(11):1553-1557.DOI: 10.1080/17425247.2021.1950686.
Ruffell B. Regulation and function of hyaluronan binding by CD44 in the immune system. University of British Columbia; 2008. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0066510.
Van Der Heijden JW, Oerlemans R, Dijkmans BA, Qi H, Laken CJVD, Lems WF, et al. Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum. 2009;60(1):12-21.DOI: 10.1002/art.24219.
Chandrupatla DM, Molthoff CF, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res. 2019;9:366-378.DOI: 10.1007/s13346-018-0589-2.
Wang X, Cao W, Sun C, Wang Y, Wang M, Wu J. Development of pH-sensitive dextran-based methotrexate nanodrug for rheumatoid arthritis therapy through inhibition of JAK-STAT pathways. Int J Pharm. 2022;622:121874,1-12.DOI: 10.1016/j.ijpharm.2022.121874.
Sauvage E, Amos D, Antalek B, Schroeder K, Tan J, Plucktaveesak N, et al. Amphiphilic maleic acid‐containing alternating copolymers—1. Dissociation behavior and compositions. J Polym Sci Part B Polym. Phys. 2004;42(19):3571-3583.DOI:10.1002/polb.20202.
Popescu I, Prisacaru I, Suflet D, Fundueanu G. Thermo- and pH-sensitivity of poly (N-vinylcaprolactam-co-maleic acid) in aqueous solution. Polym Bull. (Berl.). 2014;71:2863-2880.DOI:10.1007/s00289-014-1227-x.
Baniak B. Maleic acid amide derivatives as pH-sensitive linkers for therapeutic peptide conjugation. 2023 Available at: https://studenttheses.uu.nl/handle/20.500.12932/45622.
Barry E, Borer LL. Experiments with aspirin. J Chem Educ. 2000;77(3):354-355.DOI: 10.1021/ed077p354.
Emami J, Kazemi M, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Novel pH-triggered biocompatible polymeric micelles based on heparin–α-tocopherol conjugate for intracellular delivery of docetaxel in breast cancer. Pharm Dev Technol. 2020;25(4):492-509.DOI: 10.1080/10837450.2019.1711395.
Emami J, Rezazadeh M, Hasanzadeh F, Sadeghi H, Mostafavi A, Minaiyan M, et al. Development and in vitro/in vivo evaluation of a novel targeted polymeric micelle for delivery of paclitaxel. Int J Biol Macromol. 2015;80:29-40.DOI: 10.1016/j.ijbiomac.2015.05.062.
Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy:synthesis, characterization and pharmacokinetic study. Int J Polym. Biomater. 2021;70(14):1012-1026.DOI: 10.1080/00914037.2020.1776282.
Huang X, Liao W, Zhang G, Kang S, Zhang CY. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int J Nanomedicine. 2017;12:2215-2226.DOI: 10.2147/IJN.S130037.
Zhang H, Xu J, Xing L, Ji J, Yu A, Zhai G. Self-assembled micelles based on Chondroitin sulfate/poly (d, l-lactideco-glycolide) block copolymers for doxorubicin delivery. J Colloid Interface Sci. 2017;492:101-111.DOI: 10.1016/j.jcis.2016.12.046.
Amjad MW, Amin MCIM, Katas H, Butt AM. Doxorubicin-loaded cholic acid-polyethyleneimine micelles for targeted delivery of antitumor drugs: synthesis, characterization, and evaluation of their in vitro cytotoxicity. Nanoscale Res Lett. 2012;7(1):1-9.DOI: 10.1186/1556-276X-7-687.
Jafari A, Yan L, Mohamed MA, Wu Y, Cheng C. Well-defined diblock poly (ethylene glycol)-b-poly (ε-caprolactone)-based polymer-drug conjugate micelles for pH-responsive delivery of doxorubicin. Materials. 2020;13(7):1510,1-14.DOI: 10.3390/ma13071510.
Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421(1):160-169.DOI: 10.1016/j.ijpharm.2011.09.006.
Rangasami VK, Samanta S, Parihar VS, Asawa K, Zhu K, Varghese OP, et al. Harnessing hyaluronic acid-based nanoparticles for combination therapy:A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydr Polym. 2021;254:117291,1-9.DOI: 10.1016/j.carbpol.2020.117291.
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Hajhashemi V, Shamaeizadeh N, et al. Smart redox-sensitive micelles based on chitosan for dasatinib delivery in suppressing inflammatory diseases. Int J Biol Macromol. 2023;229:696-712.DOI: 10.1016/j.ijbiomac.2022.12.111.
Mahmoudzadeh M, Fassihi A, Dorkoosh F, Heshmatnejad R, Mahnam K, Sabzyan H, et al. Elucidation of molecular mechanisms behind the self-assembly behavior of chitosan amphiphilic derivatives through experiment and molecular modeling. Pharm Res. 2015;32(12):3899-3915.DOI: 10.1007/s11095-015-1750-y.
Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. 2015. Available at: https://www.hdki.hr/_download/repository/Pavia-Introduction-to-Spectroscopy%5B1%5D.pdf.
Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. Preclinical evaluation of antitumor activity of acid-sensitive PEGylated doxorubicin. ACS Appl Mater Interfaces. 2014;6(23):21202-21214.DOI: 10.1021/am506178c.
Foot M, Mulholland M. Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques. J Pharm Biomed Anal. 2005;38(3):397-407.DOI: 10.1016/j.jpba.2005.01.026.
Suhail M, Chiu IH, Hung MC, Vu QL, Lin IL, Wu PC. In vitro evaluation of smart and pH-sensitive chondroitin sulfate/sodium polystyrene sulfonate hydrogels for controlled drug delivery. Gels. 2022;8(7):406,1-18.DOI: 10.3390/gels8070406.
Durairaju P, Umarani C, Rajabather JR, Alanazi AM, Periyasami G, Wilson LD. Synthesis and characterization of pyridine-grafted copolymers of acrylic acid–styrene derivatives for antimicrobial and fluorescence applications. Micromachines. 2021;12(6):672,1-17.DOI: 10.3390/mi12060672.
Li NN, Lin J, Gao D, Zhang LM. A macromolecular prodrug strategy for combinatorial drug delivery. J Colloid Interface Sci. 2014;417:301-309.DOI: 10.1016/j.jcis.2013.11.061.
Duan ZH, Cheng CY, Hai Y, Wang JL. Determination and identification of chondroitin sulfate from tilapia byproducts. Adv Mater Res. 2013;690:1318-1321.DOI: 10.4028/www.scientific.net/AMR.690-693.1318.
Sarwar S, Abdul Qadir M, Alharthy RD, Ahmed M, Ahmad S, Vanmeert M, et al. Folate conjugated polyethylene glycol probe for tumor-targeted drug delivery of 5-fluorouracil. Molecules. 2022;27(6):1780,1-16.DOI: 10.3390/molecules27061780.
Emami J, Kazemi M, Mirian M. Synthesis and in vitro evaluation of self-assembling biocompatible heparin-based targeting polymeric micelles for delivery of doxorubicin to leukemic cells. Res Pharm Sci. 2025;20(1):142-164.DOI: 10.4103/RPS.RPS_197_24.
Craciunescu O, Moldovan L, Moisei M, Trif M. Liposomal formulation of chondroitin sulfate enhances its antioxidant and anti-inflammatory potential in L929 fibroblast cell line. J Liposome Res. 2013;23(2):145-153.DOI: 10.3109/08982104.2013.770016.
Habibi-Yangjeh A. Re: Why is particle size measured with SEM is bigger than TEM? Retrieved from: 2021. Available at: https://www.researchgate.net/post/Why_is_particle_size_measured_with_SEM_is_bigger_than_TEM2/6041e52986e9b1148a06b243/citation/download
Varshosaz J, Taymouri S, Hassanzadeh F, Haghjooy Javanmard S, Rostami M. Folated synperonic‐cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. Biomed Res Int. 2015;2015(1):746093,1-17.DOI: 10.1155/2015/746093.
Guo H, Zhang D, Li C, Jia L, Liu G, Hao L, et al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm. 2013;458(1):31-38.DOI: 10.1016/j.ijpharm.2013.10.020.
Yang X, Cai X, Yu A, Xi Y, Zhai G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci. 2017;496:3113-26.DOI: 10.1016/j.jcis.2017.02.033.
Li L, Huh KM, Lee YK, Kim SY. Biofunctional self-assembled nanoparticles of folate–PEG–heparin/PBLA copolymers for targeted delivery of doxorubicin. J. Mater Chem. 2011;21(39): 15288-15297.DOI: 10.1039/C1JM11944C.
Opanasopit P, Ngawhirunpat T, Chaidedgumjorn A, Rojanarata T, Apirakaramwong A, Phongying S, et al. Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system. Eur J Pharm Biopharm. 2006;64(3):269-276.DOI: 10.1016/j.ejpb.2006.06.001.
Qiu L, Zhu M, Gong K, Peng H, Ge L, Zhao L, et al. pH-triggered degradable polymeric micelles for targeted anti-tumor drug delivery. Mater Sci Eng C Mater Biol Appl. 2017;78:912-922.DOI: 10.1016/j.msec.2017.04.137.
Yan K, Feng Y, Gao K, Shi X, Zhao X. Fabrication of hyaluronic acid-based micelles with glutathione-responsiveness for targeted anticancer drug delivery. J Colloid Interface Sci. 2022;606(Pt 2):1586-1596.DOI: 10.1016/j.jcis.2021.08.129.
Shen Q, Shu H, Xu X, Shu G, Du Y, Ying X. Tofacitinib citrate-based liposomes for effective treatment of rheumatoid arthritis. Pharmazie. 2020;75(4):131-135.DOI: 10.1691/ph.2020.9154.
Varghese B, Vlashi E, Low PS. Folate receptor saturation, recycling, and release kinetics in activated macrophages. Blood. 2008;112(11):4655.DOI: 10.1182/blood.V112.11.4655.4655.
Vichare R, Crelli C, Liu L, McCallin R, Cowan A, Stratimirovic S, et al. Folate-conjugated near-infrared fluorescent perfluorocarbon nanoemulsions as theranostics for activated macrophage COX-2 inhibition. Sci Rep. 2023;13:15229,1-17.DOI: 10.1038/s41598-023-41959-9.
Almalik A, Karimi S, Ouasti S, Donno R, Wandrey C, Day PJ, et al. Hyaluronic acid (HA) presentation as a tool to modulate and control the receptor-mediated uptake of HA-coated nanoparticles. Biomaterials. 2013;34(21):5369-5380.DOI: 10.1016/j.biomaterials.2013.03.065.
Rios De la Rosa JM, Tirella A, Gennari A, Stratford IJ, Tirelli N. The CD44‐mediated uptake of hyaluronic acid‐based carriers in macrophages. Adv Healthc Mater. 2017;6(4):1-11.DOI: 10.1002/adhm.201601012.
Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ, et al. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm. 2018;130:39-47.DOI: 10.1016/j.ejpb.2018.06.020.
Tatode A, Agrawal PR, Taksande J, Qutub M, Premchandani T, Umekar M, et al. Role of folate receptor and CD44 in targeting of docetaxel and paclitaxel fabricated conjugates for efficient cancer therapy. J Med Surg Public Health. 2025; 100163,1-14.DOI: 10.1016/j.glmedi.2024.100163.
Refbacks
- There are currently no refbacks.
