Galectin-9 induces IL-1β production as a key inflammatory cytokine in the acute myeloid leukemia cell line (U937)
Abstract
Background and purpose: T-cell immunoglobulin and mucin-domain containing protein-3 (TIM-3)/ galectin-9 (Gal-9)/ autocrine loop in myeloid leukemia stem cells provokes inflammation through the NF-κB signaling pathway, which is influential in the expression of inflammatory factors. Interleukin1β (IL-1β) is a vital inflammatory cytokine that plays an important role in the proliferation and therapy resistance of acute myeloid leukemia (AML) cells. This study aimed to assess the effect of Gal-9 on IL-1β in the human leukemic U937 cell line.
Experimental approach: The U937 cells were cultured in different concentrations of Gal-9. Cell counting kit-8 was used to assess the effect of Gal-9 on human leukemic U937 cell proliferation. Also, its impact on the expression of TIM-3, Gal-9, IL-1β, IL-1βR, IL-1βRAP, and NLRP3 genes and IL-1β protein was studied by RT-PCR and ELISA, respectively. Moreover, the effect of Gal-9 on the NF-κB signaling pathway was evaluated by western blotting.
Findings/Results: U937 cells were expanded in the presence of Gal-9 in a concentration-dependent manner. Following treatment of U937 cells with Gal-9, the gene expression of Gal-9, IL-1B, IL-1BR, and IL-1BRAP were significantly upregulated compared to the control group. The IL-1β concentration increased following Gal-9 treatment in a concentration-dependent manner, while following time-pass its level significantly decreased. Furthermore, Gal-9 slightly increased NF-κB phosphorylation.
Conclusion and implications: Gal-9 increased IL-1β level as a critical inflammatory cytokine in the proliferation and resistance of AML cells to therapy. According to this finding, targeting and blocking the TIM-3/Gal-9 autocrine loop can suppress IL-1β production and facilitate AML treatment.
Keywords
Full Text:
PDFReferences
Winer ES. Secondary acute myeloid leukemia: a primary challenge of diagnosis and treatment. Hematol Oncol Clin North Am. 2020;34(2):449-463.DOI: 10.1016/j.hoc.2019.11.003.
Strickland SA, Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 2022;171:103607,1-10. DOI: 10.1016/j.critrevonc.2022.103607.
Bullinger L, Dohner K, Dohner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35(9):934-946.DOI: 10.1200/JCO.2016.71.2208.
DiNardo CD, Wei AH. How I treat acute myeloid leukemia in the era of new drugs. Blood. 2020;135(2):85-96.DOI: 10.1182/blood.2019001239.
Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, et al. Advances in the treatment of acute myeloid leukemia: new drugs and new challenges. Cancer Discov. 2020;10(4):506-525.DOI: 10.1158/2159-8290.CD-19-1011.
Zargar Balajam N, Shabani M, Aghaei M. Galectin-9 inhibits cell proliferation and induces apoptosis in Jurkat and KE-37 acute lymphoblastic leukemia cell lines via caspase-3 activation. Res Pharm Sci. 2021;16(6):612-622.DOI: 10.4103/1735-5362.327507.
Rodrigues CF, Santos FA, Amorim LAA, da Silva ALC, Marques LGA, Rocha BAM. Galectin-9 is a target for the treatment of cancer: a patent review. Int J Biol Macromol. 2024;254(Pt 1):127768. DOI: 10.1016/j.ijbiomac.2023.127768.
Kocibalova Z, Guzyova M, Borovska I, Messingerova L, Copakova L, Sulova Z, et al. Development of multidrug resistance in acute myeloid leukemia is associated with alterations of the lphn1/gal-9/tim-3 signaling pathway. Cancers (Basel). 2021;13(14):3629,1-23.DOI: 10.3390/cancers13143629.
Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341-352.DOI: 10.1016/j.stem.2015.07.011.
Gonçalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, et al. The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine. 2017;22:44-57.DOI: 10.1016/j.ebiom.2017.07.018.
Manero-Rupérez N, Martínez-Bosch N, Barranco LE, Visa L, Navarro P. The galectin family as molecular targets: hopes for defeating pancreatic cancer. Cells. 2020;9(3):689,1-16.DOI: 10.3390/cells9030689.
John S, Mishra R. Galectin-9: from cell biology to complex disease dynamics. J. Biosci. 2016;41(3): 507-534.DOI: 10.1007/s12038-016-9616-y.
Lv Y, Ma X, Ma Y, Du Y, Feng J. A new emerging target in cancer immunotherapy:galectin-9 (LGALS9). Genes Dis. 2023;10(6):2366-2382.DOI: 10.1016/j.gendis.2022.05.020.
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell. Immunol. 2021;361:104287,1-15.DOI: 10.1016/j.cellimm.2021.104287.
Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 2007;318:1141-1143.DOI: 10.1126/science.1148536.
Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H, et al. Galectin-9 increases Tim-3 + dendritic cells and CD8 + T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J Immunol. 2008;181(11):7660-7669.DOI: 10.4049/jimmunol.181.11.7660.
Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245-1252.DOI: 10.1038/ni1271.
Matsuura A, Tsukada J, Mizobe T, Higashi T, Mouri F, Tanikawa R, et al. Intracellular galectin-9 activates inflammatory cytokines in monocytes. Genes Cells. 2009;14(4):511-521.DOI: 10.1111/j.1365-2443.2009.01287.x.
Asadi A, Goudarzi F, Ghanadian M, Mohammadalipour A. Evaluation of the osteogenic effect of apigenin on human mesenchymal stem cells by inhibiting inflammation through modulation of NF-κB/IκBα. Res Pharm Sci. 2022;17(6):697-706.DOI: 10.4103/1735-5362.359436.
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target. 2017;2:17923,1-9.DOI: 10.1038/sigtrans.2017.23.
Taniguchi K, Karin M. NF-B, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309-324.DOI: 10.1038/nri.2017.142.
Khajeh E, Rasmi Y, Kheradmand F, Malekinejad H, Aramwit P, Saboory E, et al. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci. 2020; 15(6):592-601.DOI: 10.4103/1735-5362.301344.
Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8-15.DOI: 10.1016/j.cytogfr.2018.08.004.
Carey A, V DKE, Eide CA, Bagby GC, Mcweeney SK, Carey A, et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Reports. 2017;18(13): 3204-3218.DOI: 10.1016/j.celrep.2017.03.018.
Turzanski J, Grundy M, Russell NH, Pallis M. Interleukin-1β maintains an apoptosis-resistant phenotype in the blast cells of acute myeloid leukaemia via multiple pathways. Leukemia. 2004;18(10):1662-1670.DOI: 10.1038/sj.leu.2403457.
Shapourian H, Ghanadian M, Eskandari N, Shokouhi A, Demirel GY, Bazhin A V., et al. TIM-3/Galectin-9 interaction and glutamine metabolism in AML cell lines, HL-60 and THP-1. BMC Cancer. 2024;24(1):125,1-15.DOI: 10.1186/s12885-024-11898-3.
Zhu C, Anderson AC, Kuchroo VK. TIM-3 and its regulatory role in immune responses. Curr Top Microbiol Immunol. 2011;350:1-15.DOI: 10.1007/82_2010_84.
Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, et al. Tim-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18(3):645,1-12.DOI: 10.3390/ijms18030645.
Liu H, Dai Q, Li Y, Tang Z, She T. Association between high galectin expression and poor prognosis in hematologic cancers: a systematic review and meta-analysis. Hematoogyl. 2023;28(1):1-12.DOI: 10.1080/16078454.2023.2227494.
Dama P, Tang M, Fulton N, Kline J, Liu H. Gal9/Tim-3 expression level is higher in AML patients who fail chemotherapy. J Immunother Cancer. 2019;7(10):175,1-7.DOI: 10.1186/s40425-019-0611-3.
Gonçalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, et al. The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine. 2017;22:44-57.DOI: 10.1016/j.ebiom.2017.07.018.
Prokhorov A, Gibbs BF, Bardelli M, Rüegg L, Fasler-Kan E, Varani L, et al. The immune receptor Tim-3 mediates activation of PI3 kinase/mTOR and HIF-1 pathways in human myeloid leukaemia cells. Int J Biochem Cell Biol. 2015;59:11-20.DOI: 10.1016/j.biocel.2014.11.017.
Ma B, Hottiger MO. Crosstalk between wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 2016;7:378,1-14.DOI: 10.3389/fimmu.2016.00378.
Oladejo AO, Li Y, Shen W, Imam BH, Wu X, Yang J, et al. Microrna bta-mir-24-3p suppressed galectin-9 expression through tlr4/nf-kbsignaling pathway in LPS-stimulated bovine endometrial epithelial cells. Cells. 2021;10(12):3299,1-26.DOI: 10.3390/cells10123299.
Silva IG, Gibbs BF, Bardelli M, Varani L, Sumbayev VV. Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells. Oncotarget. 2015;6(32):33823-33833.DOI: 10.18632/oncotarget.5257.
Steelman AJ, Li J. Astrocyte galectin-9 potentiates microglial TNF secretion. J Neuroinflammation. 2014;11:144,1-12.DOI: 10.1186/s12974-014-0144-0.
De Boer B, Sheveleva S, Apelt K, Vellenga E, Mulder AB, Huls G, et al. The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis. Haematologica. 2021;106(12):3067-3078.DOI: 10.3324/haematol.2020.254987.
Martin-Sanchez F, Diamond C, Zeitler M, Gomez AI, Baroja-Mazo A, Bagnall J, et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ. 2016;23(7):1219-1231.DOI: 10.1038/cdd.2015.176.
Wang W, Qin Y, Song H, Wang L, Jia M, Zhao C, et al. Galectin-9 targets NLRP3 for autophagic degradation to limit inflammation. J Immunol. 2021;206(11):2692-2699.DOI: 10.4049/jimmunol.2001404.
Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, et al. Translocation products in acute myeloid leukemia activate the wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 2004;24(7):2890-2904.DOI: 10.1128/MCB.24.7.2890-2904.2004.
Ugarte GD, Vargas MF, Medina MA, León P, Necuñir D, Elorza AA, et al. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells. Blood. 2015;126(15):17851789.DOI: 10.1182/blood-2015-04-638494.
Morgan RG, Ridsdale J, Payne M, Heesom KJ, Wilson MC, Davidson A, et al. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica. 2019;104(7):1365-1377.DOI: 10.3324/haematol.2018.202846.
Majeti R, Becker MW, Tian Q, Lee TLM, Yan X, Liu R, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci U S A. 2009;106(9):3396-3401.DOI: 10.1073/pnas.0900089106.
Jefferies CA, O’Neill LAJ. Rac1 regulates interleukin 1-induced nuclear factor κB activation in an inhibitory protein κBα-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J Biol Chem. 2000;275(5):3114-3120.DOI: 10.1074/jbc.275.5.3114.
Perkins ND. Achieving transcriptional specificity with NF-κB. Int J Biochem Cell Biol. 1997;29(12):1433-1448.DOI: 10.1016/s1357-2725(97)00088-5.
Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152(1-2):25-38.DOI: 10.1016/j.cell.2012.12.012.
Kaler P, Godasi BN, Augenlicht L, Klampfer L. The NF-κB/AKT-dependent induction of Wnt signaling in colon cancer cells by macrophages and IL-1β. Cancer Microenviron. 2009;2(1):69-80.DOI: 10.1007/s12307-009-0030-y.
Refbacks
- There are currently no refbacks.
