Biochemical, histological, and immunohistochemical study on the therapeutic effects and mechanism of coenzyme Q10 in type 2 diabetes mellitus
Abstract
Background and purpose: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by β-cell dysfunction, insulin resistance, and elevated blood sugar levels. Several studies have explored the therapeutic potential of coenzyme Q10 (CoQ10) in managing diabetes, but no reports have examined the possible mechanism of CoQ10 in T2DM. Here, we reported that CoQ10 protects pancreatic β-cell structure and function by modulating the expression of mir-33a/ mir-21/SREBP1 and described more detailed tissue alterations.
Experimental approach: The study randomly divided rats into three groups (n = 10): control, diabetic, and diabetic + CoQ10. The diabetic + CoQ10 group consisted of diabetic rats that were concurrently administered CoQ10 (20 mg/kg/i.p.) three days/week for eight weeks. In addition to microscopic examination, the study involved evaluating glucose, insulin, and oxidative profiles in the serum and analyzing the levels of cholesterol, mir-33a, mir-21, and SREBP1 in pancreatic tissue.
Findings/Results: Our results revealed that CoQ10 restores glucose/insulin homeostasis, oxidative parameters, cholesterol levels, and the expressions of mir-33a, mir-21, and SREBP1. In addition, the CoQ10-treated diabetic rats showed increased active β-cells compared to the diabetic group. The immunohistochemical examination of insulin revealed a higher quantity and larger size of pancreatic islets in the experimental group.
Conclusion and implications: The restoration of
Keywords
Full Text:
PDFReferences
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275,1-34.DOI: 10.3390/ijms21176275.
Okano Y, Takeshita A, Yasuma T, Toda M, Nishihama K, Fridman D'Alessandro V, et al. Protective role of recombinant human thrombomodulin in diabetes mellitus. Cells. 2021;29;10(9):2237,1-13.DOI: 10.3390/cells10092237.
Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 2021;33(8):1519-1545.DOI: 10.1016/j.cmet.2021.07.001.
Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004; 5:396-400. DOI: 10.1038/nrg1328.
Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23-36.DOI: 10.1038/nrm2085.
Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today. 2006;78(2):140-149.DOI: 10.1002/bdrc.20070.
Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia. 2017;60(6):1057-1065.DOI: 10.1007/s00125-017-4237-z.
Ramírez CM, Goedeke L, Rotllan N, Yoon JH, Cirera-Salinas D, Mattison JA, et al. MicroRNA 33 regulates glucose metabolism. Mol Cell Biol. 2013;33(15):2891-2902.DOI: 10.1128/MCB.00016-13.
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331-340.DOI: 10.1016/s0092-8674(00)80213-5.
Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell. 2000;6(1):77-86.PMID: 10949029.
Dorotea D, Koya D, Ha H. Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways. Front Pharmacol. 2020;11:265,1-16.DOI:10.3389/fphar.2020.00265.
Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2001;2(4):282-286.DOI: 10.1093/embo-reports/kve071.
Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA A. 1999;96(5):2327-2332.DOI: 10.1073/pnas.96.5.2327.
Al-Mrabeh A. β-Cell dysfunction, hepatic lipid metabolism, and cardiovascular health in type 2 diabetes: New directions of research and novel therapeutic strategies. Biomedicines. 2021;23;9(2): 226,1-25.DOI: 10.3390/biomedicines9020226.
Sun L, Halaihel N, Zhang W, Rogers T, Levi M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem. 2002;277(21):18919-18927.DOI: 10.1074/jbc.M110650200.
Singh R, Niaz M, Rastogi S, Shukla P, Thakur A. Effect of hydrosoluble coenzyme Q10 on blood pressures and insulin resistance in hypertensive patients with coronary artery. J Hum Hypertens. 1999;13(3):203-208.DOI: 10.1038/sj.jhh.1000778.
Liang Y, Zhao D, Ji Q, et al. Effects of coenzyme Q10 supplementation on glycemic control: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. EClinicalMedicine. 2022;52:101602,1-21.DOI: 10.1016/j.eclinm.2022.101602.
Sumi K, Okura T, Fujioka Y, Kato M, Imamura T, Taniguchi SI, et al. Coenzyme Q10 suppresses apoptosis of mouse pancreatic β-cell line MIN6. Diabetol Metab Syndr. 2018;14;10:47,1-6.DOI: 10.1186/s13098-018-0351-4.
Raygan, F., Rezavandi, Z., Dadkhah Tehrani, S., Farrokhian, A., Asemi, Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. Eur J Nutr. 2016;55(8): 2357-2364.DOI:10.1007/s00394-015-1042-7.
Samimi F, Baazm M, Eftekhar E, Rajabi S, Goodarzi MT, Jalali Mashayekhi F. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways. Res Pharm Sci. 2019;14(6):524-533.DOI: 10.4103/1735-5362.272561.
Amini P, Sajedi F, Mirjalili M, Mohammadi Y, Mehrpooya M. Coenzyme Q10 as a potential add-on treatment for patients suffering from painful diabetic neuropathy: results of a placebo-controlled randomized trial. Eur J Clin Pharmacol. 2022;78(12):1899-1910.DOI:10.1007/s00228-022-03407-x.
Sadighara M, Joktaji JP, Hajhashemi V, Minaiyan M. Protective effects of coenzyme Q10 and L-carnitine against statin-induced pancreatic mitochondrial toxicity in rats. Res Pharm Sci. 2017;12(6):434-443.DOI: 10.4103/1735-5362.217424.
Sena CM, Nunes E, Gomes A, Santos MS, Proença T, Martins MI, et al. Supplementation of coenzyme Q10 and alpha-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutr Res. 2008;28(2):113-121.DOI: 10.1016/j.nutres.2007.12.005.
Fouad AA, Al-Sultan AI, Refaie SM, Yacoubi MT. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology. 2010;274(1-3):49-56.DOI: 10.1016/j.tox.2010.05.007.
Mohamed HA, Said RS. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-kB/TGF-β/MMP-9 pathways. Int Immunopharmacol. 2021;92:107347,1-11.DOI: 10.1016/j.intimp.2020.107347.
Takaya J, Iharada A, Okihana H, Kaneko K. Upregulation of hepatic 11β-hydroxysteroid dehydrogenase-1 expression in calcium-deficient rats. Ann Nutr Metab. 2011;59(2-4):73-78.DOI: 10.1159/000332915.
Wang XT, Li J., Liu L, Hu N, Jin S, Liu C, et al. Tissue cholesterol content alterations in streptozotocin-induced diabetic rats. Acta Pharmacol Sin. 2012;33:909-917.DOI: 10.1038/aps.2012.50.
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-126.DOI: 10.1016/s0076-6879(84)05016-3.
Beyer Jr WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987;161(2):559-566.DOI: 10.1016/0003-2697(87)90489-1.
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Clin Med. 1967;70(1): 158-169.
Pilz J, Meineke I, Gleiter CH. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2, 4-dinitrophenylhydrazine derivative. J Chromatogr B Biomed Sci Appl. 2000;742(2):315-325.DOI: 10.1016/s0378-4347(00)00174-2.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C (T)) method. Methods. 2001;25(4):402-408.DOI: 10.1006/meth.2001.1262.
Neris RLS, Dobles AMC, Gomes AV. Western blotting using in-gel protein labeling as a normalization control: advantages of stain-free technology. Methods Mol Biol. 2021;2261:443-456.DOI: 10.1007/978-1-0716-1186-9_28.
Zhou QX, Liu F, Zhang JS, Lu JG, Gu ZL, Gu GX. Effects of triterpenic acid from Prunella vulgaris L. on glycemia and pancreas in rat model of streptozotozin diabetes. Chin Med J (Engl). 2013;126(9):1647-1653.PMID: 23652045.
Hendrawan S, Yusuf I, Hatta M, Aman M, Patellongi I, Serra AL, et al. Allogeneic islet cells implant on poly-l-lactide matrix to reduce hyperglycaemia in streptozotocin-induced diabetic rat. Pancreatology. 2017;17(3):411-418.DOI: 10.1016/j.pan.2017.02.017.
Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Carem. 2014;37(6):1751-1758.DOI: 10.2337/dc14-0396.
Safaeian L, Vaseghi G, Mirian M, Firoozabadi MD. The effect of pramlintide, an antidiabetic amylin analogue, on angiogenesis-related markers in vitro. Res Pharm Sci. 2020;15(4):323-330.DOI: 10.4103/1735-5362.293510.
Abunasef SK, Amin HA, Abdel-Hamid GA. A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochem Cytobiol. 2014;52(1): 42-50.DOI: 10.5603/FHC.2014.0005.
Sarfraz M, Khaliq T, Hafizur R, Raza S, Ullah H. Effect of black pepper, turmeric and ajwa date on the endocrine pancreas of the experimentally induced diabetes in Wister albino rats: a histological and immunohistochemical study. Endocr Metab Sci. 2021;4:100098,1-8.DOI: 10.1016/j.endmts.2021.100098.
Saisho Y. β-cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6(1):109-124.DOI: 10.4239/wjd.v6.i1.109.
Do OH, Gunton JE, Gaisano HY, Thorn P. Changes in beta cell function occur in prediabetes and early disease in the Lepr (db) mouse model of diabetes. Diabetologia. 2016;59:1222-1230.DOI: 10.1007/s00125-016-3942-3.
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, et al. Pancreatic β-cell dysfunction in type 2 diabetes: implications of inflammation and oxidative stress. World J Diabetes. 2023;14(3):130-146.DOI: 10.4239/wjd.v14.i3.130.
Schroeder MM, Belloto RJ, Hudson RA, McInerney MF. Effects of antioxidants coenzyme Q10 and lipoic acid on interleukin-1 beta-mediated inhibition of glucose-stimulated insulin release from cultured mouse pancreatic islets. Immunopharmacol Immunotoxicol. 2005;27(1):109-122.DOI: 10.1081/iph-51755.
Jiménez-Santos MA, Juárez-Rojop IE, Tovilla-Zárate CA, Espinosa-García MT, Juárez-Oropeza MA, Ramón-Frías T, et al. Coenzyme Q10 supplementation improves metabolic parameters, liver function and mitochondrial respiration in rats with high doses of atorvastatin and a cholesterol-rich diet. Lipids Health Dis. 2014;13:22,1-10.DOI: 10.1186/1476-511X-13-22.
Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. Biochim Biophys Acta. 2008;1779(11): 697-701.DOI: 10.1016/j.bbagrm.2008.06.010.
Allen RM, Vickers KC. Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs. Arterioscler Thromb Vasc Biol. 2014;34(9):1795-1797.DOI: 10.1161/ATVBAHA.114.303741.
Allen RM, Marquart TJ, Albert CJ, Suchy FJ, Wang DQ, Ananthanarayanan M, et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med. 2012;4(9):882-895.DOI: 10.1002/emmm.201201228.
Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228-12232.DOI: 10.1073/pnas.1005191107.
Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. miR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570-1573.DOI: 10.1126/science.1189862.
Kostopoulou, F, Malizos, KN, Papathanasiou I, Tsezou A. MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes. Arthritis Res Ther. 2015;17(1):42,1-13.DOI: 10.1186/s13075-015-0556-y.
Briaud I, Kelpe CL, Johnson LM, Tran PO, Poitout V. Differential effects of hyperlipidemia on insulin secretion in islets of langerhans from hyperglycemic versus normoglycemic rats. Diabetes. 2002;51(3):662-668.DOI: 10.2337/diabetes.51.3.662.
Ferré P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes. 2004;53(Suppl 1):S43-S50.DOI: 10.2337/diabetes.53.2007.s43.
Wijesekara N, Kaur A, Westwell-Roper C, Nackiewicz D, Soukhatcheva G, Hayden MR, et al. ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice. Diabetologia. 2016;59(6):1242-1246.DOI: 10.1007/s00125-016-3907-6.
Ibrahim Fouad G. Synergistic anti-atherosclerotic role of combined treatment of omega-3 and co-enzyme Q10 in hypercholesterolemia-induced obese rats. Heliyon. 2020 6(4):e03659,1-12.DOI: 10.1016/j.heliyon.2020.e03659.
Ramírez CM, Goedeke L, Fernández-Hernando C. “Micromanaging” metabolic syndrome. Cell Cycle. 2011;10(19):3249-3252.DOI: 10.4161/cc.10.19.17558.
Hasty AH, Shimano H, Yahagi N, Amemiya-Kudo M, Perrey S, Yoshikawa T, et al. Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. J Biol Chem. 2000;275(40):31069-1077.DOI: 10.1074/jbc.M003335200.
Zhang Z, Liu H, Li Q. Glucagon-like peptide-1 effects lipotoxic oxidative stress by regulating the expression of microRNAs. Biochem Biophys Res Commun. 2017;482(4):1462-1468.DOI: 10.1016/j.bbrc.2016.12.058.
Masoudi F, Sharifi MR, Pourfarzam M. Investigation of the relationship between miR-33a, miR-122, erythrocyte membrane fatty acids profile, and serum lipids with components of metabolic syndrome in type 2 diabetic patients. Res Pharm Sci. 2022;17(3):242-251.DOI: 10.4103/1735-5362.343078.
Sakuaba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia. 2002;45(1):85-96.DOI: 10.1007/s125-002-8248-z.
Robertson RP, Harmon JS. Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett. 2007;581(19):3743-3748.DOI: 10.1016/j.febslet.2007.03.087.
Goharinia M, Zareei A, Rahimi M, Mirkhani H. Can allopurinol improve retinopathy in diabetic rats? Oxidative stress or uric acid; which one is the culprit? Res Pharm Sci. 2017;12(5):401-408.DOI: 10.4103/1735-5362.213985.
Wang J, Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxid Med Cell Longev. 2017;2017:1930261,1-9.DOI: 10.1155/2017/1930261.
Luo K, Yu JH, Quan Y, Shin YJ, Lee KE, Kim HL, et al. Therapeutic potential of coenzyme Q10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury. Sci Rep. 2019;9(1):7995,1-12.DOI: 10.1038/s41598-019-44475-x.
Refbacks
- There are currently no refbacks.
