Designing of a novel chimeric antimicrobial peptide against Acinetobacter baumannii using three different bioinformatics methods and evaluation of its antimicrobial activity in vitro

Yasin Rakhshani, Jafar Amani , Hamideh Mahmoodzadeh Hosseini, Seyed Ali Mirhosseini, Fattah Sotoodeh Nejad Nematalahi

Abstract


Background and purpose: The study aimed to design new chimeric antimicrobial peptides targeting Acinetobacter baumannii, a widespread and growing global concern due to antibiotic resistance. Three bioinformatics-based methods were utilized for this purpose.

Experimental approach: To design new chimeric peptides targeting Acinetobacter baumannii, a group of peptides were initially selected and divided into two categories based on their scores and performance. The peptides were then combined through 3 methods: 1. combining sequences based on their secondary structure using GOR IV software; 2. grouping only the amino acid sequences involved in the formation of the target peptide helix structure using Accelrys DS visualizer software; and 3. combining the most similar parts of the peptides in terms of amino acid type and order using online AntiBP2 software. The sequence length was optimized, and some amino acids were substituted.

Findings/Results: The M-CIT peptide was selected for synthesis in the first method, but it did not show significant activity against the target bacteria (MIC = 187.5 µM and MBC = 375 µM). In the second method, no suitable score was observed. However, the M-PEX12 peptide was synthesized in the second method, demonstrating antimicrobial activity against A. baumannii (MIC = 33.1 µM and MBC = 41.4 µM).

Conclusion and implications: Three methods were evaluated for designing new chimeric peptides, and the third method, which involved modifying the number of amino acids in the parental peptides while maintaining their similarity, was found to be the most suitable.

 


Keywords


Acinetobacter baumanni; Antimicrobial peptide; Drug design; Hybrid peptides; Model membrane; Web servers.

Full Text:

PDF

References


Momenzadeh M, Soltani R, Shafiee F, Hakamifard A, Pourahmad M, Abbasi S. The effectiveness of colistin/levofloxacin compared to colistin/meropenem in the treatment of ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii: a randomized controlled clinical trial. Res Pharm Sci. 2023;18(1):39-48.DOI: 10.4103/1735-5362.363594.

Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics (Basel). 2020;9(3):119,1-29.DOI: 10.3390/antibiotics9030119.

Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021;10(3):373,1-31.DOI: 10.3390/pathogens10030373.

Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010;35(3):219-226.DOI: 10.1016/j.ijantimicag.2009.10.024.

Wang H, Guo P, Sun H, Wang H, Yang Q, Chen M, et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother. 2007;51(11):4022-4028.DOI: 10.1128/AAC.01259-06.

Koczura R, Przyszlakowska B, Mokracka J, Kaznowski A. Class 1 integrons and antibiotic resistance of clinical Acinetobacter calcoaceticus-baumannii complex in Poznań, Poland. Curr Microbiol. 2014;69(3):258-262.DOI: 10.1007/s00284-014-0581-0.

Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551-1557.DOI: 10.1038/nbt1267.

Cotter PD, Hill C, Ross RP. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci. 2005;6(1):61-75.DOI: 10.2174/1389203053027584.

Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC Bioinform. 2007;8(1):1-10.DOI: 10.1186/1471-2105-8-263.

Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007;270(1):1-11.DOI: 10.1111/j.1574-6968.2007.00683.x.

Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM. Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int. 2014;2014:867381,1-15.DOI: 10.1155/2014/867381.

Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Mietzner TA, Montelaro RC. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother. 2013;57(6):2511-2521.DOI: 10.1128/aac.02218-12.

Osorio D, Rondón-Villarreal P, Torres R. Peptides: a package for data mining of antimicrobial peptides. R J. 2015;7(1):4-14.DOI: 10.221RJ-2015-001/RJ-2015-001.

Madanchi H, Akbari S, Shabani AA, Sardari S, Farmahini Farahani Y, Ghavami G, et al. Alignment-based design and synthesis of new antimicrobial aurein-derived peptides with improved activity against gram-negative bacteria and evaluation of their toxicity on human cells. Drug Dev Res. 2019;80(1):162-170.DOI: 10.1002/ddr.21503.

Darwish R, Almaaytah A, Salama A. The design and evaluation of the antimicrobial activity of a novel conjugated penta-ultrashort antimicrobial peptide in combination with conventional antibiotics against sensitive and resistant strains of S. aureus and E. coli. Res Pharm Sci. 2022;17(6):612-620.DOI: 10.4103/1735-5362.359429.

Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA. Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(5):2671-2679.DOI: 10.1128/aac.02972-15.

Guo Y, Xun M, Han J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine. 2018;97(42):1-7.DOI: 10.1097/MD.0000000000012832.

Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS One. 2012;7(11):e50263,1-12.DOI: 10.1371/journal.pone.0050263.

Kim MK, Kang NH, Ko SJ, Park J, Park E, Shin DW, et al. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. Int J Mol Sci. 2018;19(10):3041,1-14.DOI: 10.3390/ijms19103041.

Gui S, Li R, Feng Y, Wang S. Transmission electron microscopic morphological study and flow cytometric viability assessment of Acinetobacter baumannii susceptible to Musca domestica cecropin. Sci World J. 2014;2014:657536,1-6.DOI: 10.1155/2014/657536.

Lee J, Jung SW, Cho AE. Molecular insights into the adsorption mechanism of human β-defensin-3 on bacterial membranes. Langmuir. 2016;32(7):1782-1790.DOI: 10.1021/acs.langmuir.5b04113.

Jo S, Lim JB, Klauda JB, Im W. CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys J. 2009;97(1):50-58.DOI: 10.1016/j.bpj.2009.04.013.

Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA. Enhanced lipid diffusion and mixing in accelerated molecular dynamics. J Chem Theory Comput. 2011;7(10):3199-3207.DOI: 10.1021/ct200430c.

Sevcsik E, Pabst G, Richter W, Danner S, Amenitsch H, Lohner K. Interaction of LL-37 with model membrane systems of different complexity: influence of the lipid matrix. Biophys J. 2008;94(12):4688-4699.DOI: 10.1529/biophysj.107.123620.

Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, et al. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev. 2021;13(1):35-69.DOI: 10.1007/s12551-021-00784-y.

Cisneros GA, Wikfeldt KT, Ojamäe L, Lu J, Xu Y, Torabifard H, et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem Rev. 2016;116(13):7501-7528.DOI: 10.1021/acs.chemrev.5b00644.

Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. Am Chem Soc. 2008;4(1):116-122.DOI: 10.1021/ct700200b.

Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys. 2013;139(18):184103,1-32.DOI: 10.1063/1.4826261.

Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118(8):4177-4338.DOI: 10.1021/acs.chemrev.7b00427.

Smith E. The information geometry of two-field functional integrals. Inf Geom. 2022;5(2):427-492.DOI: 10.1007/s41884-022-00071-z.

Idrees M, Mohammad AR, Karodia N, Rahman A. Multimodal role of amino acids in microbial control and drug development. Antibiotics (Basel). 2020;9(6): 330,1-23.DOI: 10.3390/antibiotics9060330.

Friedman R, Nachliel E, Gutman M. Molecular dynamics of a protein surface: ion-residues interactions. Biophys J. 2005;89(2):768-781.DOI: 10.1529/biophysj.105.058917.

Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, m100, 31st edition. J Clin Microbiol. 2021;59(12):e0021321,1-13.DOI: 10.1128/jcm.00213-21.

Michael A, Kelman T, Pitesky M. Overview of quantitative methodologies to understand antimicrobial resistance via minimum inhibitory concentration. Animals (Basel). 2020;10(8):1405,1-17.DOI: 10.3390/ani10081405.

Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci USA. 2019;116(52):26516-26522.DOI: 10.1073/pnas.1909585117.

Lee CM, Lai CC, Chiang HT, Lu MC, Wang LF, Tsai TL, et al. Presence of multidrug-resistant organisms in the residents and environments of long-term care facilities in Taiwan. J Microbiol Immunol Infect. 2017;50(2):133-144.DOI: 10.1016/j.jmii.2016.12.001.

Gabere MN, Noble WS. Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics. 2017;33(13):1921-1929.DOI: 10.1093/bioinformatics/btx081.

Zhang K, Teng D, Mao R, Yang N, Hao Y, Wang J. Thinking on the construction of antimicrobial peptide databases: powerful tools for the molecular design and screening. Int J Mol Sci. 2023; 24(4):1-13.DOI: 10.3390/ijms24043134.

Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2008;37(Database issue):D933-D937.DOI: 10.1093/nar/gkn823.

Maccari G, Di Luca M, Nifosí R, Cardarelli F, Signore G, Boccardi C, et al. Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol. 2013;9(9):e1003212,1-12.DOI: 10.1371/journal.pcbi.1003212.

Yamamoto N, Tamura A. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism. Peptides. 2010;31(5): 794-805.DOI: 10.1016/j.peptides.2010.01.006.

Lama R, Pereiro P, Costa MM, Encinar JA, Medina-Gali RM, Pérez L, et al. Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. Fish Shellfish Immunol. 2018;82:190-199.DOI: 10.1016/j.fsi.2018.08.004.

Zhu X, Shan A, Ma Z, Xu W, Wang J, Chou S, et al. Bactericidal efficiency and modes of action of the novel antimicrobial peptide T9W against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59(6):3008-3017.DOI: 10.1128/AAC.04830-14.

Raman SS, Vijayaraj R, Parthasarathi R, Subramanian V. Helix forming tendency of valine substituted poly-alanine: a molecular dynamics investigation. J Phys Chem B. 2008;112(30):9100-9104.DOI: 10.1021/jp7119813.

de la Salud Bea R, Petraglia AF, Ascuitto MR, Buck QM. Antibacterial activity and toxicity of analogs of scorpion venom IsCT peptides. Antibiotics (Basel). 2017;6(3):13,1-8.DOI: 10.3390/antibiotics6030013.

Lee E, Shin A, Jeong KW, Jin B, Jnawali HN, Shin S, et al. Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS One. 2014;9(12): e114453,1-30.DOI: 10.1371/journal.pone.0114453.

Tripathi AK, Kumari T, Harioudh MK, Yadav PK, Kathuria M, Shukla P, et al. Identification of GXXXXG motif in chrysophsin-1 and its implication in the design of analogs with cell-selective antimicrobial and anti-endotoxin activities. Sci Rep. 2017;7(1):1-16.DOI: 10.1038/s41598-017-03576-1


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.