Sodium oleate functionalized simvastatin liposomes: boosting endosomal escape and anticancer efficacy in triple negative breast cancer

Ebrahim Sadaqa , Satrialdi Satrialdi, Fransiska Kurniawan, Diky Mudhakir

Abstract


Background and purpose: Due to delivery obstacles, Simvastatin, a potential anticancer agent, faces clinical limitations. This study aimed to enhance simvastatin delivery and efficacy against triple-negative breast cancer (TNBC) by developing liposomes modified with sodium oleate (NaOL) to improve endosomal escape.

Experimental approach: Simvastatin was encapsulated in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol liposomes through thin film hydration. Liposomes with poly(lactic-co-glycolic acid) (PLGA), individually modified with NaOL and PLGA, served as a control endosomal escape enhancer. Formulations were characterized for size, charge, and encapsulation efficiency. Endosomal escape was quantified through subcellular colocalization analysis using confocal microscopy, and anticancer activity was assessed by evaluating cytotoxicity against 4T1 TNBC cells, followed by measurements of intracellular reactive oxygen species (ROS) and DNA damage.

Findings/Results: Unmodified liposomes had a size of 115.2 ± 7.94 nm, a zeta potential of -9.67 ± 3.01 mV, and an encapsulation efficiency of 78.93% ± 6.72. NaOL-modified liposomes had a size of 119 ± 9.37 nm, a zeta potential of -31.05 ± 2.38 mV, and an encapsulation efficiency of 84.96% ± 2.51. While PLGA-modified liposomes had a size of 151.1 ± 7.35 nm, zeta potential of -18.68 ± 1.41 mV, and encapsulation efficiency of 83.63% ± 5.56. Importantly, NaOL-liposomes exhibited lower IC50 values, improved endosomal escape, and enhanced anticancer activity compared to unmodified liposomes.

Conclusion and Implications: Surface modification with NaOL is a promising strategy to enhance the anticancer efficacy of simvastatin liposomes against TNBC through improved endosomal escape. These encouraging in-vitro findings warrant further in-vivo investigations into the potential for NaOL-modified liposomes to improve TNBC patient outcomes.

 

 


Keywords


Endosomal escape; Liposomes; Simvastatin; Sodium oleate, Triple negative breast cancer.

Full Text:

PDF

References


Baranova A, Krasnoselskyi M, Starikov V, Kartashov S, Zhulkevych I, Vlasenko V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life. 2022;15(2):153-161.DOI: 10.25122/jml-2021-0108.

Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61,1-13.DOI: 10.1186/s13058-020-01296-5.

Watson R, Tulk A, Erdrich J. The link between statins and breast cancer in mouse models: a systematic review. Cureus. 2022;14(11):e31893,1-12.DOI: 10.7759/cureus.31893.

Alizadeh J, Zeki AA, Mirzaei N, Tewary S, Rezaei Moghadam A, Glogowska A, et al. Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci Rep. 2017;7:44841,1-14.DOI:10.1038/srep44841.

Wang T, Seah S, Loh X, Chan CW, Hartman M, Goh BC, et al. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget. 2016;7(3):2532-2544.DOI: 10.18632/oncotarget.6304.

Bai F, Yu Z, Gao X, Gong J, Fan L, Liu F. Simvastatin induces breast cancer cell death through oxidative stress up-regulating miR-140-5p. Aging (Albany NY). 2019;11(10):3198-3219.DOI: 10.18632/aging.101974.

Shen YY, Yuan Y, Du YY, Pan YY. Molecular mechanism underlying the anticancer effect of simvastatin on MDA-MB-231 human breast cancer cells. Mol Med Rep. 2015;12(1):623-630.DOI: 10.3892/mmr.2015.3411.

Licarete E, Sesarman A, Banciu M. Exploitation of pleiotropic actions of statins by using tumour-targeted delivery systems. J. Microencapsul. 2015;32(7):619-631.DOI: 10.3109/02652048.2015.1073383.

Askarizadeh A, Butler AE, Badiee A, Sahebkar A. Liposomal nanocarriers for statins:a pharmacokinetic and pharmacodynamics appraisal. J Cell Physiol 2019;234(2):1219-1229.DOI: 10.1002/jcp.27121.

Chen LC, Chang CH, Yu CY, Chang YJ, Hsu WC, Ho CL, et al. Biodistribution, pharmacokinetics and imaging of 188Re-BMEDA-labeled pegylated liposomes after intraperitoneal injection in a C26 colon carcinoma ascites mouse model. Nucl. Med. Biol. 2007;34(4):415-423.DOI: 10.1016/j.nucmedbio.2007.02.003.

Stapleton S, Milosevic M, Allen C, Zheng J, Dunne M, Yeung I, et al. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors. PLoS One. 2013;8(12):e81157,1-10.DOI: 10.1371/journal.pone.0081157.

Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Res. 2023;6:0148,1-23.DOI: 10.34133/research.0148.

Pei D, Buyanova M. Overcoming endosomal entrapment in drug delivery. Bioconjug. Chem. 2018;30(2):273-283.DOI: 10.1021/acs.bioconjchem.8b00778.

Ciocîlteu MV, Podgoreanu P, Delcaru C, Chifiriuc MC, Manda CV, Biţă A, et al. PLGA-gentamicin biocomposite materials with potential antimicrobial applications in orthopedics. Farmacia. 2019;67(4):580-586.DOI: 10.31925/farmacia.2019.4.4.

Postelnicu RA, Ciocîlteu MV, Neacșu IA, Nicolicescu C, Costachi A, Amzoiu M, et al. PLGA-bisphosphonates conjugated nanoparticles:Synthesis and morphological characterization. Farmacia. 2023;71(1):83-90.DOI: 10.31925/farmacia.2023.1.11.

Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, et al. Polymeric nanoparticles for drug delivery. Chem Rev. 2024;124(9):5505-5616.DOI: 10.1021/acs.chemrev.3c00705.

Panyam J, Zhou W, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles:Implications for drug and gene delivery. FASEB J. 2002;16(10):1217-1226.DOI: 10.1096/fj.02-0088com.

Llanos S, Giraldo LJ, Santamaria O, Franco CA, Cortés FB. Effect of sodium oleate surfactant concentration grafted onto SiO2 nanoparticles in polymer flooding processes. ACS Omega. 2018;3(12):18673-18684.DOI: 10.1021/acsomega.8b02944.

Roth HC, Schwaminger S, Fraga García P, Ritscher J, Berensmeier S. Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration. J Nanopart Res. 2016;18(99):1-12.DOI: 10.1007/s11051-016-3405-2.

Walde P, Ichikawa S. Lipid vesicles and other polymolecular aggregates:from basic studies of polar lipids to innovative applications. Appl. Sci. 2021;11(21):10345,1-81.DOI: 10.3390/app112110345.

Predut D, Semenescu AD, Manea A, Dinu S, Popovici R, Jivanescu A. Cytotoxicity assessment of liposomes loaded with biologically active substances on oral tumour cells. Farmacia. 2022;70(6):1081-1088.DOI: 10.31925/farmacia.2022.6.11.

Khafagy ES, Almutairy BK, Abu Lila AS. Tailoring of novel bile salt stabilized vesicles for enhanced transdermal delivery of simvastatin: a new therapeutic approach against inflammation. Polymers (Basel). 2023;15(3):677,1-18.DOI: 10.3390/polym15030677.

Mudhakir D, Akita H, Harashima H. Topology of octaarginines (R8) or IRQ ligand on liposomes affects the contribution of macropinocytosis- and caveolae-mediated cellular uptake. React Funct Polym. 2011;71(3):340-343.DOI: 10.1016/j.reactfunctpolym.2010.11.013.

Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin conjugated pH- and redox-responsive poly(amidoamine) dendrimer conjugate as an efficient drug delivery carrier for cancer therapy. Int J Nanomedicine. 2020;15: 2751-2764.DOI: 10.2147/IJN.S238536.

Maurya DK. HaloJ:an imageJ program for semiautomatic quantification of DNA damage at single-cell level. Int J Toxicol. 2014;33(5):362-366.DOI: 10.1177/1091581814549961.

Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, Pontes TRF, Silva KL, Damasceno IHM, et al. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater. 2014;364:72-79.DOI: 10.1016/j.jmmm.2014.04.001.

Platel A, Carpentier R, Becart E, Mordacq G, Betbeder D, Nesslany F. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production, and endocytosis. J Appl Toxicol. 2016;36(3):434-444.DOI: 10.1002/jat.3247.

Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231-242.DOI: 10.1007/s13346-015-0220-8.

Yonar D, Sünnetçioǧlu MM. Spectroscopic and calorimetric studies on trazodone hydrochloride-phosphatidylcholine liposome interactions in the presence and absence of cholesterol. Biochim Biophys Acta. 2014;1838(10):2369-2379.DOI: 10.1016/j.bbamem.2014.06.009.

Ali I, Rehman J, Ullah S, Imran M, Javed I, El-Haj BM, et al. Preliminary investigation of novel tetra-tailed macrocycle amphiphile based nano-vesicles for amphotericin B improved oral pharmacokinetics. Artif Cells Nanomed Biotechnol. 2018;46(sup3):1204-1214.DOI: 10.1080/21691401.2018.1536061.

Brito Raj S, Chandrasekhar KB, Reddy KB. Formulation, in-vitro and in-vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system. Futur J Pharm Sci. 2019;5(1):1-14.DOI: 10.1186/s43094-019-0008-7.

Zhou X, Wang J, Wu J, Yang X, Yung BC, Lee LJ, et al. Preparation and evaluation of a novel liposomal formulation of cisplatin. Eur J Pharm Sci. 2015;66:90-95.DOI: 10.1016/j.ejps.2014.10.004.

Shaker MN, Ramadan HS, Mohamed MM, El khatib AM, Roston GD. Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma. Appl Nanosci. 2014;4:777-789.DOI: 10.1007/s13204-013-0268-z.

Nath SD, Son S, Sadiasa A, Min YK, Lee BT. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. Int J Pharm. 2013;443(1-2):87-94.DOI: 10.1016/j.ijpharm.2012.12.037.

Zhaorigetu S, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G, Walton BL. Delivery of negatively charged liposomes into the atherosclerotic plaque of apolipoprotein E-deficient mouse aortic tissue. J Liposome Res. 2014;24(3):182-190.DOI: 10.3109/08982104.2013.863208.

Dong D, Quan E, Yuan X, Xie Q, Li Z, Wu B. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of UGT-mediated metabolism. Mol Pharm. 2017;14(9):2864-2874.DOI: 10.1021/acs.molpharmaceut.6b00851.

Malinovskaya Y, Melnikov P, Baklaushev V, Gabashvili A, Osipova N, Mantrov S, et al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharm. 2017;524(1-2):77-90.DOI: 10.1016/j.ijpharm.2017.03.049.

Luput L, Sesarman A, Porfire A, Achim M, Muntean D, Casian T, et al. Liposomal simvastatin sensitizes C26 murine colon carcinoma to the antitumor effects of liposomal 5-fluorouracil in vivo. Cancer Sci. 2020;111(4):1344-1356.DOI: 10.1111/cas.14312.

El Sabeh M, Vincent KL, Afrin S, Motamedi M, Saada J, Yang J, et al. Simvastatin-loaded liposome nanoparticles treatment for uterine leiomyoma in a patient-derived xenograft mouse model: a pilot study. J Obstet Gynaecol. 2022;42(6):2139-2143.DOI: 10.1080/01443615.2022.2033964.

Nikpoor AR, Jaafari MR, Zamani P, Teymouri M, Gouklani H, Saburi E, et al. Cell cytotoxicity, immunostimulatory and antitumor effects of lipid content of liposomal delivery platforms in cancer immunotherapies: a comprehensive in vivo and in vitro study. Int J Pharm. 2019;567:118492,1-9.DOI: 10.1016/j.ijpharm.2019.118492.

Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A. 2007;80(2):333-341.DOI: 10.1002/jbm.a.30909.

Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine. 2010;6(5):662-671.DOI: 10.1016/j.nano.2010.02.002.

Xu H, Yang D, Cai C, Gou J, Zhang Y, Wang L, et al. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater. 2015;16: 156-168.DOI: 10.1016/j.actbio.2015.01.039.

Sánchez CA, Rodríguez E, Varela E, Zapata E, Páez A, Massó FA, et al. Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress. Cancer Invest. 2008;26(7):698-707.DOI: 10.1080/07357900701874658.

Hwang KE, Na KS, Park DS, Choi KH, Kim BR, Shim H, et al. Apoptotic induction by simvastatin in human lung cancer A549 cells via Akt signaling dependent down-regulation of survivin. Invest New Drugs. 2011;29(5):945-952.DOI: 10.1007/s10637-010-9450-2.

Kotamraju S, Willams CL, Kalyanaraman B. Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 2007;67(15):7386-7394.DOI: 10.1158/0008-5472.CAN-07-0993.

Ahn KS, Sethi G, Aggarwal BB. Simvastatin potentiates TNF-α-induced apoptosis through the down-regulation of NF-κB-dependent antiapoptotic gene products: role of IκBα kinase and TGF-β-activated kinase-1. J Immunol. 2007;178(4):2507-2516.DOI: 10.4049/jimmunol.178.4.2507.

Lopez S, Bermudez B, Montserrat-De La Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, et al. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. Biochim Biophys Acta. 2014;1838(6):1638-1656.DOI: 10.1016/j.bbamem.2014.01.007.

Weijers RNM. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev. 2012;8(5):390-400.DOI: 10.2174/157339912802083531.

Leekumjorn S, Cho HJ, Wu Y, Wright NT, Sum AK, Chan C. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim Biophys Acta. 2009;1788(7):1508-1516.DOI: 10.1016/j.bbamem.2009.04.002.

Chernomordik LV, Leikina E, Frolov V, Bronk P, Zimmerberg J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol. 1997;136(1):81-93.DOI: 10.1083/jcb.136.1.81.

Joardar A, Pattnaik GP, Chakraborty H. Combination of oleic acid and the gp41 fusion peptide switches the phosphatidylethanolamine-induced membrane fusion mechanism from a nonclassical to a classical stalk model. J Phys Chem B. 2022;126(20): 3673-3684.DOI: 10.1021/acs.jpcb.2c00307.

Joardar A, Pattnaik GP, Chakraborty H. Effect of phosphatidylethanolamine and oleic acid on membrane fusion: Phosphatidylethanolamine circumvents the classical stalk model. J Phys Chem B. 2021;125(48):13192-13202.DOI: 10.1021/acs.jpcb.1c08044.

Torchilin VP, Lukyanov AN, Klibanov AL, Omelyanenko VG. Interaction between oleic acid-containing pH-sensitive and plain liposomes:fluorescent spectroscopy studies. FEBS Lett. 1992;305(3):185-188.DOI: 10.1016/0014-5793(92)80663-2.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.