Exploring the potential of anticancer peptides as therapeutic agents for cancer treatment

Reza Ghavimi , Samira Mahmoudi, Mohsen Mohammadi, Elahe Khodamoradi, Ali Jahanian-Najafabadi

Abstract


Despite great advances in cancer identification and treatment, malignancies remain the primary cause of high morbidity and mortality worldwide. The drawbacks of conventional chemotherapy, such as severe toxicity, lack of specificity related to actively dividing cells, and resistance, can warrant the urgent need to develop an alternative approach to treat this disease. To overcome the drawbacks, researchers are attempting to deliver drugs to the site of action (targeted delivery) or to identify drugs that specifically target tumor cells. In this regard, highly cationic and amphipathic antimicrobial peptides are attracting the attention of researchers due to their potent anticancer activity, low cost of manufacture, and, most critically, tumor-targeting activity. A growing number of documents have shown that some of the mentioned peptides exhibited a broad spectrum of cytotoxic activity against cancer cells but not normal mammalian cells entitled as anticancer peptides. Due to their solubility, low toxicity, strong tumor penetration, high selectivity, and ability to be used alone or in conjunction with other conventional medications, anticancer peptides have the potential to become very successful cancer treatments in the future. This review provided an overview of the studies concerning anticancer peptide classification, modes of action, and selectivity, and also summarized some of the anticancer peptides developed for targeting different types of malignancies. The role of in silico methods or artificial intelligence in the design and discovery of anticancer peptides was briefly explained. Additionally, the current review addressed challenges in utilizing anticancer peptides for cancer therapy and highlighted peptides currently undergoing clinical trials.

 

 


Keywords


Anticancer peptides; Antimicrobial peptides; Cancer; Cancer therapy; Targeted therapy.

Full Text:

PDF

References


Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol. 2016;7(1):54-86.DOI: 10.5306/wjco.v7.i1.54.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.DOI: 10.3322/caac.21660.

Momenzadeh N, Hajian S, Shabankare A, Ghavimi R, Kabiri-Samani S, Kabiri H, et al. Photothermic therapy with cuttlefish ink-based nanoparticles in combination with anti-OX40 mAb achieve remission of triple-negative breast cancer. Int Immunopharmacol. 2023;115:109622,1-2.DOI: 10.1016/j.intimp.2022.109622.

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49.DOI: 10.3322/caac.21820.

Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100-110.DOI: 10.1093/carcin/bgp263.

Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm. 2018;1:139-157.DOI: 10.5772/intechopen.76558.

Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300,1-26.DOI: 10.3389/fphar.2018.01300.

Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019;13:961,1-26.DOI: 10.3332/ecancer.2019.961.

Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233,1-24.DOI: 10.3390/ijms21093233.

Padma VV. An overview of targeted cancer therapy. BioMedicine. 2015;5(4):19,1-6.DOI: 10.7603/s40681-015-0019-4.

Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98-107.DOI: 10.1021/ar700108g.

Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with dual antimicrobial-anticancer activity: strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules. 2020;25(18): 4245,1-20.DOI: 10.3390/molecules25184245.

Taheri B, Mohammadi M, Nabipour I, Momenzadeh N, Roozbehani M. Identification of novel antimicrobial peptide from Asian sea bass (lates calcarifer) by in silico and activity characterization. PLoS One. 2018;13(10):e0206578,1-22.DOI: 10.1371/journal.pone.0206578.

Ghavimi R, Mohammadi E, Akbari V, Shafiee F, Jahanian-Najafabadi A. In silico design of two novel fusion proteins, p28-IL-24 and p28-M4, targeted to breast cancer cells. Res Pharm Sci. 2020;15(2): 200-208.DOI: 10.4103/1735-5362.283820.

Tolos Vasii AM, Moisa C, Dochia M, Popa C, Copolovici L, Copolovici DM. Anticancer potential of antimicrobial peptides: focus on buforins. Polymers. 2024;16(6):728,1-14.DOI: 10.3390/polym16060728.

de la Torre BG, Albericio F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2021;26(3):627,1-14.DOI: 10.3390/molecules26030627.

Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol. 2024;14:1321386,1-17.DOI: 10.3389/fmicb.2023.1321386.

Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37(2):207-225.DOI: 10.1016/j.peptides.2012.07.001.

Huang YB, Wang XF, Wang HY, Liu Y, Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther. 2011;10(3):416-46.DOI: 10.1158/1535-7163.MCT-10-0811.

Wang H, Li Y, Hou J, Jiang C, Li D, Lu J, et al. Biological activity and stability of new peptide derivative KW-WK from bovine lactoferricin. Food Sci. 2018;39(20):57-62.DOI: 10.7506/spkx1002-6630-201820009.

Vesely B, Alli A, Song S, Gower Jr W, Sanchez‐Ramos J, Vesely D. Four peptide hormones’ specific decrease (up to 97%) of human prostate carcinoma cells. Eur J Clin Invest. 2005;35(11): 700-710.DOI: 10.1111/j.1365-2362.2005.01569.x.

Skelton IV WP, Skelton M, Vesely DL. Cardiac hormones are potent inhibitors of secreted frizzled-related protein-3 in human cancer cells. Exp Ther Med. 2013;5(2):475-478.DOI: 10.3892/etm.2012.806.

Vesely B, Song S, Sanchez‐Ramos J, Fitz S, Solivan S, R. Gower Jr W, et al. Four peptide hormones decrease the number of human breast adenocarcinoma cells. Eur J Clin Invest. 2005;35(1):60-69.DOI: 10.1111/j.1365-2362.2005.01444.x.

Jang A, Jo C, Kang KS, Lee M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 2008;107(1):327-336.DOI: 10.1016/j.foodchem.2007.08.036.

Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett. 2014;351(1):13-22.DOI: 10.1016/j.canlet.2014.05.002.

Su L, Xu G, Shen J, Tuo Y, Zhang X, Jia S, et al. Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncol Rep. 2010;23(1):3-9.PMID: 19956858.

Yu L, Yang L, An W, Su X. Anticancer bioactive peptide‐3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J Cell Biochem. 2014;115(4):697-711.DOI: 10.1002/jcb.24711.

Su X, Dong C, Zhang J, Su L, Wang X, Cui H, et al. Combination therapy of anti-cancer bioactive peptide with cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci. 2014;4(1):7,1-13.DOI: 10.1186/2045-3701-4-7.

Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim-Biophys Acta. 2008;1778(2):357-375.DOI: 10.1016/j.bbamem.2007.11.008.

Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci. 2005;62(7-8):784-790.DOI: 10.1007/s00018-005-4560-2.

Fan H, Liu H, Zhang Y, Zhang S, Liu T, Wang D. Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. J Future Foods. 2022;2(2):143–159.DOI: 10.1016/j.jfutfo.2022.03.003.

Hernandez-Ledesma B, Hsieh CC, Ben O. Lunasin, a novel seed peptide for cancer prevention. Peptides. 2009;30(2):426-430.DOI: 10.1016/j.peptides.2008.11.002.

Brock K, Talley K, Coley K, Kundrotas P, Alexov E. Optimization of electrostatic interactions in protein-protein complexes. Biophys J. 2007;93(10):3340-3352.DOI: 10.1529/biophysj.107.112367.

Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim-Biophys Acta. 1992;1121(1-2):130-136.DOI: 10.1016/0167-4838(92)90346-F.

Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol. 2020;10(7):200004,1-10.DOI: 10.1098/rsob.200004.

Hilchie AL, Vale R, Zemlak TS, Hoskin DW. Generation of a hematologic malignancy-selective membranolytic peptide from the antimicrobial core (RRWQWR) of bovine lactoferricin. Exp Mol Pathol. 2013;95(2):192-198.DOI: 10.1016/j.yexmp.2013.07.006.

Gaspar D, Freire JM, Pacheco TR, Barata JT, Castanho MA. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics. Biochim Biophys Acta. 2015;1853(2):308-316.DOI: 10.1016/j.bbamcr.2014.11.006.

Dong TT, Tian ZG, Wang JH. The structural parameters-functional activity relationship of alpha-helical antimicrobial peptides. Chin Biotechnol. 2007;27(9):116-119.DOI: 10.1109/5.771073.

Khavani M, Mehranfar A, Mofrad MRK. Antimicrobial peptide interactions with bacterial cell membranes. J Biomol Struct Dyn. 2024:1-14.DOI: 10.1080/07391102.2024.2304683.

Kim MK, Kang NH, Ko SJ, Park J, Park E, Shin DW, et al. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. Int J Mol Sci. 2018;19(10):3041,1-14.DOI: 10.3390/ijms19103041.

Dennison SR, Harris F, Phoenix DA. The interactions of aurein 1.2 with cancer cell membranes. Biophys Chem. 2007;127(1-2):78-83.DOI: 10.1016/j.bpc.2006.12.009.

Wang C, Dong S, Zhang L, Zhao Y, Huang L, Gong X, et al. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci Rep. 2017;7(1):8293,1-13.DOI: 10.1038/s41598-017-08963-2.

Ren SX, Shen J, Cheng AS, Lu L, Chan RL, Li ZJ, et al. FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PLoS One. 2013;8(5):e63641,1-9.DOI: 10.1371/journal.pone.0063641.

Tran TH, Le TH, Tran TTP. The potential effect of endogenous antimicrobial peptides in cancer immunotherapy and prevention. J Pept Sci. 2025;31(2):e3664. DOI: 10.1002/psc.3664.

Lee Y, Phat C, Hong SC. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides. 2017;95:94-105.DOI: 10.1016/j.peptides.2017.06.002.

Hu E, Wang D, Chen J, Tao X. Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int J Clin Exp Med. 2015;8(3):4059-4065.PMID: 26064310.

Zhang Y, Fu J, Zhang Z, Qin H. miR-486-5p regulates the migration and invasion of colorectal cancer cells through targeting PIK3R1. Oncol Lett. 2018;15(5):7243-7248.DOI: 10.3892/ol.2018.8233.

Wang Y, Guo D, He J, Song L, Chen H, Zhang Z, et al. Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: anti-cancer therapeutical effects of natural cyclopeptide RA-XII. Biochem Biophys Res Commun. 2019;512(4):819-824.DOI: 10.1016/j.bbrc.2019.03.088.

Veldhuizen EJ, Schneider VA, Agustiandari H, Van Dijk A, Tjeerdsma-van Bokhoven JL, et al. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One. 2014;9(4):e95939,1-7.DOI: 10.1371/journal.pone.0095939.

Bae S, Oh K, Kim H, Kim Y, Kim HR, Hwang YI, et al. The effect of alloferon on the enhancement of NK cell cytotoxicity against cancer via the up-regulation of perforin/granzyme B secretion. Immunobiology. 2013;218(8):1026-1033.DOI: 10.1016/j.imbio.2012.12.002.

Appiah C, Chen S, Retyunskiy V, Tzeng C, Zhao Y. Study of alloferon, a novel immunomodulatory antimicrobial peptide (AMP), and its analogues. Front Pharmacol. 2024;15:1359261,1-16.DOI: 10.3389/fphar.2024.1359261.

Jeon H, Le MT, Ahn B, Cho HS, Le VCQ, Yum J, et al. Copy number variation of PR-39 cathelicidin, and identification of PR-35, a natural variant of PR-39 with reduced mammalian cytotoxicity. Gene. 2019;692:88-93. DOI: 10.1016/j.gene.2018.12.065.

Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SW. Recent progress in the discovery and design of antimicrobial peptides using traditional machine learning and deep learning. Antibiotics. 2022;11(10):1451,1-30.DOI: 10.3390/antibiotics11101451.

Adyns L, Proost P, Struyf S. Role of defensins in tumor biology. Int J Mol Sci. 2023;24(6):5268,1-16.DOI: 10.3390/ijms24065268.

Tripathi AK, Vishwanatha JK. Role of anti-cancer peptides as immunomodulatory agents: potential and design strategy. Pharmaceutics. 2022;14(12):2686,1-20.DOI: 10.3390/pharmaceutics14122686.

Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J. 2018;17:734-752.DOI: 10.17179/excli2018-1447.

Dai Y, Cai X, Shi W, Bi X, Su X, Pan M, et al. Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Amino acids. 2017;49(9):1601-1610.DOI: 10.1007/s00726-017-2453-y.

Strandberg E, Killian JA. Snorkeling of lysine side chains in transmembrane helices: how easy can it get? FEBS Lett. 2003;544(1-3):69-73.DOI: 10.1016/S0014-5793(03)00475-7.

Yamaguchi Y, Yamamoto K, Sato Y, Inoue S, Morinaga T, Hirano E. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation. Biomed Res. 2016;37(2):153-159.DOI: 10.2220/biomedres.37.153.

Oancea E, Teruel MN, Quest AF, Meyer T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol. 1998;140(3):485-498.DOI: 10.1083/jcb.140.3.485.

Shamova O, Orlov D, Stegemann C, Czihal P, Hoffmann R, Brogden K, et al. A novel proline-rich antimicrobial peptide from goat leukocytes. Int J Pep Prot Res. 2009;15:107-119.DOI: 10.1007/s10989-009-9170-7.

Maddocks OD, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJ, et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544(7650):372-376.DOI: 10.1038/nature22056.

Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, et al. Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for chronic clinical cancer therapy and prevention. Cell Cycle. 2018;17(3):356-361.DOI: 10.1080/15384101.2017.1405195.

Gueron G, Anselmino N, Chiarella P, Ortiz EG, Lage Vickers S, Paez AV, et al. Game-changing restraint of Ros-damaged phenylalanine, upon tumor metastasis. Cell Death Dis. 2018;9(2):1-15.DOI: 10.1038/s41419-017-0147-8.

Dennison SR, Whittaker M, Harris F, Phoenix DA. Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci. 2006;7(6):487-499.DOI: 10.2174/138920306779025611.

Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, et al. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res. 2006;34(18):5157-5165.DOI: 10.1093/nar/gkl667.

Barras D, Chevalier N, Zoete V, Dempsey R, Lapouge K, Olayioye MA, et al. A WXW motif is required for the anticancer activity of the TAT-RasGAP317–326 peptide. J Biol Chem. 2014;289(34):23701-23711.DOI: 10.1074/jbc.M114.576272.

Ahmaditaba MA, Shahosseini S, Daraei B, Zarghi A, Houshdar Tehrani MH. Design, synthesis, and biological evaluation of new peptide analogues as selective COX‐2 inhibitors. Arch Pharm. 2017;350(10):1700158,1-9.DOI: 10.1002/ardp.201700158.

Bhunia D, Mondal P, Das G, Saha A, Sengupta P, Jana J, et al. Spatial position regulates power of tryptophan: discovery of a major-groove-specific nuclear-localizing, cell-penetrating tetrapeptide. J Am Chem Soc. 2018;140(5):1697-1714.DOI: 10.1021/jacs.7b10254.

Wu ZZ, Ding GF, Huang FF, Yang ZS, Yu FM, Tang YP, et al. Anticancer activity of anthopleura anjunae oligopeptides in prostate cancer DU-145 cells. Mar Drugs. 2018;16(4):125,1-15.DOI: 10.3390/md16040125.

Zhang QT, Liu ZD, Wang Z, Wang T, Wang N, Wang N, et al. Recent advances in small peptides of marine origin in cancer therapy. Mar drugs. 2021;19(2):115,1-29.DOI: 10.3390/md19020115.

Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. 2020;25(12):2850,1-25.DOI: 10.3390/molecules25122850.

Hou X, Du Q, Li R, Zhou M, Wang H, Wang L, et al. Feleucin‐BO 1: a novel antimicrobial non‐apeptide amide from the skin secretion of the toad, Bombina orientalis, and design of a potent broad‐spectrum synthetic analogue, feleucin‐K 3. Chem Biol Drug Des. 2015;85(3):259-267.DOI: 10.1111/cbdd.12396.

Lee DG, Hahm KS, Park Y, Kim HY, Lee W, Lim SC, et al. Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int. 2005;5:21,1-14.DOI: 10.1186/1475-2867-5-21.

Sung WS, Park Y, Choi CH, Hahm KS, Lee DG. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumoniae. Biochem Biophys Res Commun. 2007;363(3):806-810.DOI: 10.1016/j.bbrc.2007.09.041.

Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry. 1998;37(12):4288-4298.DOI: 10.1021/bi972323m.

Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, et al. Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules. 2020;10(3):456,1-26.DOI: 10.3390/biom10030456.

Alvares DS, Wilke N, Neto JR, Fanani ML. The insertion of Polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state. Chem Phys Lipids. 2017;207(Pt A):38-48.DOI: 10.1016/j.chemphyslip.2017.08.001.

Alvares DS, Fanani ML, Neto JR, Wilke N. The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochem Biophys Acta. 2016;1858(2):393-402.DOI: 10.1016/j.bbamem.2015.12.010.

Han Y, Cui Z, Li YH, Hsu WH, Lee BH. In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs. 2015;14(1):2,1-12.DOI: 10.3390/md14010002.

Shinde SD, Atpadkar P, Swain P, Apparao CV, Sandhya V, Sahu B. Peptide and protein in therapeutics. In: Jain A and Malik S, editors. Peptide and protein drug delivery using polysaccharides. 1st edition. The Netherlands: Elsevier; 2024. p. 1-24.DOI: 10.1016/B978-0-443-18925-8.00007-6.

Soleimani M, Mahnam K, Mirmohammad-Sadeghi H, Sadeghi-Aliabadi H, Jahanian-Najafabadi A. Theoretical design of a new chimeric protein for the treatment of breast cancer. Res Pharm Sci. 2016;11(3):187-199.PMID: 27499788.

Soleimani M, Mirmohammad-Sadeghi H, Sadeghi-Aliabadi H, Jahanian-Najafabadi A. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein. Adv Biomed Sci. 2016;5:70,1-7.DOI: 10.4103/2277-9175.180639.

Furlong SJ, Ridgway ND, Hoskin DW. Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin. Int J Oncol. 2008;32(3):537-544.PMID: 18292930.

Richardson A, de Antueno R, Duncan R, Hoskin DW. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem Biophys Res Commun. 2009;388(4):736-741.DOI: 10.1016/j.bbrc.2009.08.083.

Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol. 2006;50(1):141-147.DOI: 10.1016/j.eururo.2005.12.043.

Anghel R, Jitaru D, Bădescu L, Bădescu M, Ciocoiu M. The cytotoxic effect of magainin II on the MDA-MB-231 and M14K tumour cell lines. Biomed Res Int. 2013;2013:1-11.DOI: 10.1155/2013/831709.

Wang C, Li HB, Li S, Tian LL, Shang DJ. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie. 2012;94(2):434-441.DOI: 10.1016/j.biochi.2011.08.011.

Anghel R, Jitaru D, Badescu L, Ciocoiu M, Badescu M. The cytotoxic effect of Cecropin A and Cecropin B on the MDA-MB-231 and M14K tumour cell lines. J Biomed Sci Eng. 2014;7(8):1-13.DOI: 10.4236/jbise.2014.78052.

Rádis-Baptista G. Cell-penetrating peptides derived from animal venoms and toxins. Toxins. 2021;13(2):147,1-25.DOI: 10.3390/toxins13020147.

Soleimani M, Sadeghi HM, Jahanian-Najafabadi A. A Bi-functional targeted P28-NRC chimeric protein with enhanced cytotoxic effects on breast cancer cell lines. Iran J Pharm Res. 2019;18(2):735-744.DOI: 10.22037/ijpr.2019.2392.

Hou D, Hu F, Mao Y, Yan L, Zhang Y, Zheng Z, et al. Cationic antimicrobial peptide NRC-03 induces oral squamous cell carcinoma cell apoptosis via CypD-mPTP axis-mediated mitochondrial oxidative stress. Redox Biol. 2022;54:102355,1-19.DOI: 10.1016/j.redox.2022.102355.

Zhu LN, Fu CY, Zhang SF, Chen W, Jin YT, Zhao FK. Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus‐induced leukemic cells. J Pept Sci. 2013;19(9):566-574.DOI: 10.1002/psc.2533.

Konno K, Hisada M, Fontana R, Lorenzi CC, Naoki H, Itagaki Y, et al. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochem Biophys Acta. 2001;1550(1):70-80.DOI: 10.1016/S0167-4838(01)00271-0.

Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang Y-H, Craik DJ, et al. Characterization of tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int J Mol Sci. 2019;20(17):4184,1-25.DOI: 10.3390/ijms20174184.

Lee LF, Mariappan V, Vellasamy KM, Lee VS, Vadivelu J. Antimicrobial activity of tachyplesin 1 against Burkholderia pseudomallei: an in vitro and in silico approach. PeerJ. 2016;4:e2468,1-29.DOI: 10.7717/peerj.2468.

Risso A, Braidot E, Sordano MC, Vianello A, Macrì F, Skerlavaj B, et al. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol. 2002;22(6):1926-1935.DOI: 10.1128/MCB.22.6.1926-1935.2002.

Nagaoka I, Suzuki K, Niyonsaba F, Tamura H, Hirata M. Modulation of neutrophil apoptosis by antimicrobial peptides. ISRN Microbiol. 2012;2012,1-12.DOI: 10.5402/2012/345791.

Bhattacharjya S, Zhang Z, Ramamoorthy A. LL-37: structures, antimicrobial activity, and influence on amyloid-related diseases. Biomolecules. 2024;14(3):320,1-29.DOI: 10.3390/biom14030320.

Baker MA, Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 1993;53(13):3052-3057.PMID: 8319212.

Sharma S. Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells. Oncogene. 1993;8(4):939-947.PMID: 8455945.

Killion JJ, Dunn JD. Differential cytolysis of murine spleen, bone-marrow and leukemia cells by melittin reveals differences in membrane topography. Biochem Biophys Res Commun. 1986;139(1):222-227.DOI: 10.1016/S0006-291X(86)80102-4.

Sui SF, Wu H, Guo Y, Chen KS. Conformational changes of melittin upon insertion into phospholipid monolayer and vesicle. J Biochem. 1994;116(3): 482-487.DOI: 10.1093/oxfordjournals.jbchem.a124550.

Peng X, Zhou C, Hou X, Liu Y, Wang Z, Peng X, et al. Molecular characterization and bioactivity evaluation of two novel bombinin peptides from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Amino acids. 2018;50(2):241-253.DOI: 10.1007/s00726-017-2509-z.

Zhao L, Tolbert WD, Ericksen B, Zhan C, Wu X, Yuan W, et al. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. PloS One. 2013;8(11):e78937,1-14.DOI: 10.1371/journal.pone.0078937.

Shafiee F, Rabbani M, Jahanian-Najafabadi A. Production and evaluation of cytotoxic effects of DT386-BR2 fusion protein as a novel anti-cancer agent. J Microbiol Methods. 2016;130:100-105.DOI: 10.1016/j.mimet.2016.09.004.

Pourhadi M, Jamalzade F, Jahanian-Najafabadi A, Shafiee F. Expression, purification, and cytotoxic evaluation of IL24-BR2 fusion protein. Res Pharm Sci. 2019;14(4):320-328.DOI: 10.4103/1735-5362.263556.

Shafiee F, Rabbani M, Jahanian-Najafabadi A. Optimization of the expression of DT386-BR2 fusion protein in Escherichia coli using response surface methodology. Adv Biomed Sci. 2017;6:22,1-6.DOI: 10.4103/2277-9175.201334.

Chen J, Xu XM, Underhill CB, Yang S, Wang L, Chen Y, et al. Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res. 2005;65(11):4614-4622.DOI: 10.1158/0008-5472.CAN-04-2253.

Ghasemi A, Ghavimi R, Momenzadeh N, Hajian S, Mohammadi M. Characterization of antitumor activity of a synthetic moronecidin-like peptide computationally predicted from the tiger tail seahorse hippocampus comes in tumor-bearing mice. Int J Pept Res Ther. 2021;27(4):2391-2401.DOI: 10.1007/s10989-021-10260-6.

Mohammadi M, Taheri B, Momenzadeh N, Salarinia R, Nabipour I, Farshadzadeh Z, et al. Identification and characterization of novel antimicrobial peptide from hippocampus comes by in silico and experimental studies. Marine Biotechnol. 2018;20(6):718-728.DOI: 10.1007/s10126-018-9843-3.

Giuliani A, Pirri G, Nicoletto S. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol. 2007;2(1):1-33.DOI: 10.2478/s11535-007-0010-5.

Zhang C, Yang M, Ericsson AC. Antimicrobial peptides: potential application in liver cancer. Front Microbiol. 2019;10:1257,1-8.DOI: 10.3389/fmicb.2019.01257.

Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther. 2018;183:160-176.DOI: 10.1016/j.pharmthera.2017.10.010.

Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of polymeric carriers for intracellular peptide delivery in oncology applications. Chem Rev. 2021;121(18):11653-11698.DOI: 10.1021/acs.chemrev.0c00963.

Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys. 1977;10(1):1-34.DOI: 10.1017/S0033583500000123.

Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact. 2022;21:118,1-18.DOI: 10.1186/s12934-022-01848-8.

Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry. 1992;31(49):12416-12423.DOI: 10.1021/bi00164a017.

Hilchie A, Hoskin D, Power Coombs M. Anticancer activities of natural and synthetic peptides. Adv Exp Med Biol. 2019;1117:131-147.DOI: 10.1007/978-981-13-3588-4_9.

Xiao X, Wu ZC, Chou KC. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PloS One. 2011;6(6):e20592,1-10.DOI: 10.1371/journal.pone.0020592.

Diao Y, Han W, Zhao H, Zhu S, Liu X, Feng X, et al. Designed synthetic analogs of the α‐helical peptide temporin‐La with improved antitumor efficacies via charge modification and incorporation of the integrin αvβ3 homing domain. J Pept Sci. 2012;18(7):476-486.DOI: 10.1002/psc.2420.

van Hinsbergh VW, Collen A, Koolwijk P. Angiogenesis and anti-angiogenesis: perspectives for the treatment of solid tumors. Ann Oncol. 1999;10:4,60-63.PMID: 10436787.

Gacche RN, Meshram RJ. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol. 2013;113(2):333-354.DOI: 10.1016/j.pbiomolbio.2013.10.001.

Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347-362.DOI: 10.1016/j.molmed.2011.01.015.

Yi ZF, Cho SG, Zhao H, Wu Yy, Luo J, Li D, et al. A novel peptide from human apolipoprotein (a) inhibits angiogenesis and tumor growth by targeting c‐Src phosphorylation in VEGF‐induced human umbilical endothelial cells. Int J Cancer. 2009;124(4):843-852.DOI: 10.1002/ijc.24027.

Jang JP, Jung HJ, Han JM, Jung N, Kim Y, Kwon HJ, et al. Two cyclic hexapeptides from Penicillium sp. FN070315 with antiangiogenic activities. PLoS One. 2017;12(9):e0184339,1-15.DOI: 10.1371/journal.pone.0184339.

Zhang Y, Nicolau A, Lima CF, Rodrigues LR. Bovine lactoferrin induces cell cycle arrest and inhibits mTOR signaling in breast cancer cells. Nutr Cancer. 2014;66(8):1371-1385.DOI: 10.1080/01635581.2014.956260.

Wolf JS, Li G, Varadhachary A, Petrak K, Schneyer M, Li D, et al. Oral lactoferrin results in T cell-dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin Cancer Res. 2007;13(5):1601-1610.DOI: 10.1158/1078-0432.CCR-06-2008.

Li X, Meng Y, Plotnikoff NP, Youkilis G, Griffin N, Wang E, et al. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+ Foxp3+ regulatory T cells (Tregs) in mice. Cancer Biol Ther. 2015;16(3):450-459.DOI: 10.1080/15384047.2014.1003006.

Zhao D, Plotnikoff N, Griffin N, Song T, Shan F. Methionine enkephalin, its role in immunoregulation and cancer therapy. Int Immunopharmacol. 2016;37:59-64.DOI: 10.1016/j.intimp.2016.02.015.

Zagon IS, Donahue RN, McLaughlin PJ. Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am J Physiol Regul Integr Comp Physiol. 2009;297(4):R1154-R1161.DOI: 10.1152/ajpregu.00414.2009.

Huang Y, Feng Q, Yan Q, Hao X, Chen Y. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem. 2015;15(1):73-81.DOI: 10.2174/1389557514666141107120954.

Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science. 2000;289(5482):1159-1164.DOI: 10.1126/science.289.5482.1159.

Ekundayo BE, Obafemi TO, Adewale OB, Obafemi BA, Oyinloye BE, Ekundayo SK. Oxidative stress, endoplasmic reticulum stress and apoptosis in the pathology of Alzheimer’s disease. Cell Biochem Biophys. 2024;82(2):457-477.DOI: 10.1007/s12013-024-01248-2.

Liu M, Zhao X, Zhao J, Xiao L, Liu H, Wang C, et al. Induction of apoptosis, G0/G1 phase arrest and microtubule disassembly in K562 leukemia cells by Mere15, a novel polypeptide from Meretrix meretrix Linnaeus. Mar Drugs. 2012;10(11):2596-2607.DOI: 10.3390/md10112596.

Huang TC, Lee JF, Chen JY. Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs. 2011;9(10):1995-2009.DOI: 10.3390/md9101995.

Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol. 2024;14:1321386,1-17.DOI: 10.3389/fmicb.2023.1321386.

Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev. 2013;33(1):190-234.DOI: 10.1002/med.20252.

Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol. 2009;625(1-3):190-194.DOI: 10.1016/j.ejphar.2009.08.043.

Dobrzyńska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem. 2005;276(1-2):113-119.DOI: 10.1007/s11010-005-3557-3.

Lee E, Rosca EV, Pandey NB, Popel AS. Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation. Int J Biochem Cell Biol. 2011;43(12):1812-1821.DOI: 10.1016/j.biocel.2011.08.020.

Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs. 2006;15(8):933-946.DOI: 10.1517/13543784.15.8.933.

Mulukutla A, Shreshtha R, Deb VK, Chatterjee P, Jain U, Chauhan N. Recent advances in antimicrobial peptide-based therapy. Bioorg Chem. 2024;145:107151.DOI: 10.1016/j.bioorg.2024.107151.

Jiang R, Du X, Lönnerdal B. Comparison of bioactivities of talactoferrin and lactoferrins from human and bovine milk. J Pediatr Gastroenterol Nutr. 2014;59(5):642-652.DOI: 10.1097/MPG.0000000000000481.

Roudi R, Syn NL, Roudbary M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front immunol. 2017;8:1320,1-10.DOI: 10.3389/fimmu.2017.01320.

Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, et al. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res. 2015;43(D1):D837-D843.DOI: 10.1093/nar/gku892.

Hajisharifi Z, Piryaiee M, Beigi MM, Behbahani M, Mohabatkar H. Predicting anticancer peptides with Chou′s pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol. 2014;341:34-40.DOI: 10.1016/j.jtbi.2013.08.037.

Grisoni F, Neuhaus CS, Gabernet G, Müller AT, Hiss JA, Schneider G. Designing anticancer peptides by constructive machine learning. ChemMedChem. 2018;13(13):1300-1302.DOI: 10.1002/cmdc.201800204.

Kozłowska K, Nowak J, Kwiatkowski B, Cichorek M. ESR study of plasmatic membrane of the transplantable melanoma cells in relation to their biological properties. Exp Toxicol Pathol. 1999;51(1):89-92.DOI: 10.1016/S0940-2993(99)80074-8.

Zhang W, Li J, Liu LW, Wang KR, Song JJ, Yan JX, et al. A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides. 2010;31(10):1832-1388.DOI: 10.1016/j.peptides.2010.06.019.

Gaspar D, Veiga AS, Sinthuvanich C, Schneider JP, Castanho MA. Anticancer peptide SVS-1: efficacy precedes membrane neutralization. Biochemistry. 2012;51(32):6263-6265.DOI: 10.1021/bi300836r.

Yang QZ, Wang C, Lang L, Zhou Y, Wang H, Shang DJ. Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharm Res. 2013;36(11):1302-1310.DOI: 10.1007/s12272-013-0112-8.

Lemeshko VV. Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties. Biochim Biophys Acta. 2013;1828(3):1047-1056.DOI: 10.1016/j.bbamem.2012.12.012.

Hu C, Chen X, Zhao W, Chen Y, Huang Y. Design and modification of anticancer peptides. Drug Des. 2016;5(3):1000138,1-10.DOI: 10.4172/2169-0138.1000138.

Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794-3804.DOI: 10.2174/092986712801661004.

Bidwell GL 3rd, Raucher D. Therapeutic peptides for cancer therapy. Part I- peptide inhibitors of signal transduction cascades. Expert Opin Drug Deliv. 2009;6(10):1033-1047.DOI: 10.1517/17425240903143745.

Huang Y, Li X, Sha H, Zhang L, Bian X, Han X, et al. Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncol Rep. 2017;37(4):2063-2070.DOI: 10.3892/or.2017.5440.

Duvic M, Talpur R. Optimizing denileukin diftitox (Ontak) therapy. 2008;4(4):457-469.DOI: 10.2217/14796694.4.4.457

Ghavimi R, Akbari V, Jahanian-Najafabadi A. Production and evaluation of in vitro and in vivo effects of P28-IL24, a promising anti-breast cancer fusion protein. Int J Pept Res Ther. 2021;27(4): 2583-2594.DOI: 10.1007/s10989-021-10275-z.

Liu M, Wang H, Liu L, Wang B, Sun G. Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy. J Transl Med. 2016;14(1):1-12.DOI: 10.1186/s12967-016-0910-0.

Aguirre TA, Teijeiro-Osorio D, Rosa M, Coulter I, Alonso M, Brayden D. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106(Pt B):223-241.DOI: 10.1016/j.addr.2016.02.004.

Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7(1):48,1-27.DOI: 10.1038/s41392-022-00904-4.

Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010;46(3):308-316.DOI: 10.1007/s12033-010-9321-2.

Kakde D, Jain D, Shrivastava V, Kakde R, Patil A. Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci. 2011;1(9):1-10.DOI: 10.4155/tde-2020-0079.

Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30(7):505-515.DOI: 10.1080/02713680590968637.

Kao C, Lin X, Yi G, Zhang Y, Rowe-Magnus DA, Bush K. Cathelicidin antimicrobial peptides with reduced activation of Toll-like receptor signaling have potent bactericidal activity against colistin-resistant bacteria. mBio. 2016;7(5):e01418-e01416,1-10.DOI: 10.1128/mbio.01418-16.

Ghadiri N, Javidan M, Taştan Ö, Liao Z, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol.2024;15:1310443,1-18.DOI: 10.3389/fimmu.2024.1310443.

Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1-2):75-93.DOI: 10.1016/j.ijpharm.2013.02.030.

Ismail R, Csoka I. Novel strategies in the oral delivery of antidiabetic peptide drugs–Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm. 2017;115:257-267.DOI: 10.1016/j.ejpb.2017.03.015.

Uggerhøj LE, Poulsen TJ, Munk JK, Fredborg M, Sondergaard TE, Frimodt‐Moller N, et al. Rational design of alpha‐helical antimicrobial peptides: do's and don'ts. ChemBioChem. 2015;16(2):242-253.DOI: 10.1002/cbic.201402581.

Kelly GJ, Kia AFA, Hassan F, O'Grady S, Morgan MP, Creaven B, et al. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Org Biomol Chem. 2016;14(39):9278-9286.DOI: 10.1039/c6ob01815g.

Dąbrowska K, Kaźmierczak Z, Majewska J, Miernikiewicz P, Piotrowicz A, Wietrzyk J, et al. Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment. Future Microbiol. 2014;9(7):861-869.DOI: 10.2217/fmb.14.50.

Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y. TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. PLoS One. 2015;10(9):e0138911,1-13.DOI: 10.1371/journal.pone.0138911.

Darwish W. Polymers for enhanced photodynamic cancer therapy: phthalocyanines as a photosensitzer model. Polym Adv Technol. 2021;32(3):919-930.

DOI: 10.1002/pat.5154.

Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol. 2017; 55(1):1-12.DOI: 10.1007/s12275-017-6452-1.

Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural peptides inducing cancer cell death: Mechanisms and properties of specific candidates for cancer therapeutics. Molecules. 2021;26(24):7453,1-21.DOI: 10.3390/molecules26247453.

Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, et al. Targeting cancer heterogeneity with immune responses driven by oncolytic peptides. Trends Cancer. 2021;7(6):557-572.DOI: 10.1016/j.trecan.2020.12.012.

Darabi F, Saidijam M, Nouri F, Mahjub R, Soleimani M. Anti‐CD44 and EGFR dual‐targeted solid lipid nanoparticles for delivery of doxorubicin to triple‐negative breast cancer cell line: preparation, statistical optimization, and in vitro characterization. Biomed Res Int. 2022;2022(1):6253978,1-13.DOI: 10.1155/2022/6253978.

Faraji N, Arab SS, Doustmohammadi A, Daly NL, Khosroushahi AY. ApInAPDB: a database of apoptosis-inducing anticancer peptides. Sci Rep. 2022;12(1):21341,1-7.DOI: 10.1038/s41598-022-25530-6.

Ghavimi R, Mohammadi E, Akbari V, Shafiee F, Jahanian-Najafabadi A. In silico design of two novel fusion proteins, p28-IL-24 and p28-M4, targeted to breast cancer cells. Res Pharm Sci. 2020;15(2): 200-208.DOI: 10.4103/1735-5362.283820.

Chen Z, Wang R, Guo J, Wang X. The role and future prospects of artificial intelligence algorithms in peptide drug development. Biomed Pharmacother. 2024;175:116709,1-13.DOI: 10.1016/j.biopha.2024.116709.

Aguilera-Puga MdC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F. Accelerating the discovery and design of antimicrobial peptides with artificial intelligence. Method Mol Biol. 2024;2714:329-352.DOI: 10.1007/978-1-0716-3441-7_18.

Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MA, et al. Anti-cancer peptides: status and future prospects. Molecules. 2023;28(3):1148,1-27.DOI: 10.3390/molecules28031148.

Huang KY, Tseng YJ, Kao HJ, Chen CH, Yang HH, Weng SL. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties. Sci Rep. 2021; 11(1):1-13.DOI: 10.1038/s41598-021-93124-9.

Fu B, Zhang Y, Long W, Zhang A, Zhang Y, An Y, et al. Identification and characterization of a novel phage display-derived peptide with affinity for human brain metastatic breast cancer. Biotechnol Lett. 2014;36(11):2291-2301.DOI: 10.1007/s10529-014-1608-0.

Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules. 2021;11(8):1120,1-17.DOI: 10.3390/biom11081120.

Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev. 2023;39(1):45-84.DOI: 10.1080/02648725.2022.2082157.

Conibear AC, Schmid A, Kamalov M, Becker CF, Bello C. Recent advances in peptide-based approaches for cancer treatment. Curr Med Chem. 2020;27(8):1174-1205.DOI: 10.2174/0929867325666171123204851.

Rodríguez FD, Coveñas R. Antitumor strategies targeting peptidergic systems. Encyclopedia. 2024;4(1):478-487.DOI: 10.3390/encyclopedia4010031.

Nhàn NTT, Yamada T, Yamada KH. Peptide-based agents for cancer treatment: current applications and future directions. Int J Mol Sci. 2023;24(16):12931,1-35.DOI: 10.3390/ijms241612931.

Ruggirello C, Mörl K, Beck-Sickinger AG. Peptides for therapeutic applications-challenges and chances. Pure Appl Chem. 2024;96(1):91-103.DOI: 10.1515/pac-2024-0104.

Ekinci M, Magne TM, Alencar LMR, Fechine PBA, Santos-Oliveira R, Ilem-Özdemir D. Molecular imaging for lung cancer: exploring small molecules, peptides, and beyond in radiolabeled diagnostics. Pharmaceutics. 2024;16(3):404,1-21.DOI: 10.3390/pharmaceutics16030404.

Khalily MP, Soydan M. Peptide‐based diagnostic and therapeutic agents: where we are and where we are heading? Chem Biol Drug Des. 2023;101(3): 772-793.DOI: 10.1111/cbdd.14180.

Noei A, Nili-Ahmadabadi A, Soleimani M. The enhanced cytotoxic effects of the p28-apoptin chimeric protein as a novel anti-cancer agent on breast cancer cell lines. Drug Res. 2019;69(03): 144-150.DOI: 10.1055/a-0654-4952.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.