Synthesis and in vitro evaluation of self-assembling biocompatible heparin-based targeting polymeric micelles for delivery of doxorubicin to leukemic cells

Jaber Emami , Moloud Kazemi

Abstract


Background and purpose: Biodegradable polymeric micelles have emerged as one of the most promising platforms for targeted drug delivery. In the present study, a polymeric micelle composed of folic acid (FA), heparin (HEP), dexamethasone (DEX), and (FA-PEG-HEP-CA-TOC) was developed for the delivery of doxorubicin (DOX) to leukemic cells.

Experimental approach: FA-HEP-DEX was synthesized and characterized by 1H-NMR. DOX-loaded micelles were prepared using a dialysis method. The impact of various processing variables, including polymer-to-drug ratio, dialysis temperature, and solvent type, on the physicochemical properties of the micelles were evaluated. In vitro, cellular uptake and cytotoxicity of the micelles in folate receptor-positive (K562) and negative (HepG2) cells were evaluated.

Findings/Results: The 1H-NMR results confirmed the successful synthesis of FA-HEP-DEX. DOX-loaded micelles exhibited an average particle size of 117 to 181 nm with a high drug entrapment efficiency (36% to 71%). DOX-loaded micelles also showed sustained drug-release behavior. DOX-loaded FA-HEP-DEX micelles exhibited higher cellular uptake and in vitro cytotoxicity than free DOX and DOX-loaded HEP-DEX micelles in K562 cells.

Conclusions and implications: DOX was well incorporated into the micelles with high entrapment efficiency due to high solubility of DOX in DEX as the hydrophobic component of the micelle structure. The higher cellular uptake and cell toxicity of targeted micelles correspond to the presence of FA on the micelle surface, which promotes cell internalization of the micelles via specific receptor-mediated endocytosis. Our results indicated the potential of DOX-loaded heparin-based micelles with desirable antitumor activity as a targeted drug delivery system in cancer therapy.

 

 


Keywords


Dexamethasone; DOX; Heparin; Leukemia; Polymeric micelle.

Full Text:

PDF

References


Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: A population-based study. Lancet Haematol. 2018;5(1):e14-e24. DOI: 10.1016/s2352-3026(17)30232-6.

Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27. DOI: 10.1158/1055-9965.EPI-15-0578.

Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood. 2017;130(4):410-423. DOI: 10.1182/blood-2017-02-734541.

Rezazadeh M, Akbari V, Amuaghae E, Emami J. Preparation and characterization of an injectable thermosensitive hydrogel for simultaneous delivery of paclitaxel and doxorubicin. Res Pharm Sci. 2018;13(3):181-191. DOI: 10.4103/1735-5362.228918.

Jabbour E, Cortes JE, Ghanem H, O’Brien S, Kantarjian HM. Targeted therapy in chronic myeloid leukemia. Expert Rev Anticancer Ther. 2008;8(1):99-110.DOI: 10.1586/14737140.8.1.99.

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286,1-13. DOI: 10.3389/fphar.2015.00286.

Coukell AJ, Brogden RN. Liposomal amphotericin B. Therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs. 1998;55:585-612. DOI: 10.2165/00003495-199855040-00008.

Allen TM. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs. 1998;56(5):747-756.DOI: 10.2165/00003495-199856050-00001.

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102,1-9.DOI: 10.1186/1556-276X-8-102.

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015:975-999.DOI: 10.2147/IJN.S68861.

Flühmann B, Ntai I, Borchard G, Simoens S, Mühlebach S. Nanomedicines: the magic bullets reaching their target? Eur J Pharm Sci. 2019;128: 73-80.DOI: 10.1016/j.ejps.2018.11.019.

Zhao W, Zhuang S, Qi XR. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomed. 2011;6:3087-3098.DOI: 10.2147/IJN.S25399.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12,1-13.DOI: 10.3390/pharmaceutics9020012.

Akimoto H, Bruno NA, Slate DL, Billingham ME, Torti SV, Torti FM. Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Res. 1993;53(19):4658-4664.PMID: 8402643.

Ito H, Miller SC, Billingham ME, Akimoto H, Torti SV, Wade R, et al. Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA. 1990;87(11):4275-4279.DOI: 10.1073/pnas.87.11.4275.

Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11(11):1096-1106.DOI: 10.1016/S1470-2045(10)70114-5.

Krishnan V, Xu X, Barwe SP, Yang X, Czymmek K, Waldman SA, et al. Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: A novel application in pediatric nanomedicine. Mol Pharm. 2013;10(6):2199-2210.DOI: 10.1021/mp300350e.

Salimi A, Sharif Makhmal Zadeh B, Kazemi M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Res Pharm Sci. 2019;14(4):293-307.DOI: 10.4103/1735-5362.263554.

Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Development of a RP-HPLC method for analysis of docetaxel in tumor-bearing mice plasma and tissues following injection of docetaxel-loaded pH responsive targeting polymeric micelles. Res Pharm Sci. 2020;15(1):1-13.DOI: 10.4103/1735-5362.278710.

Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A, et al. In vitro and in vivo evaluation of novel DTX-loaded multifunctional heparin-based polymeric micelles targeting folate receptors and endosomes. Recent Pat Anticancer Drug Discov. 2020;15(4):341-359. DOI: 10.2174/1574892815666201006124604.

Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: synthesis, characterization and pharmacokinetic study. Int J Polym Mater. 2021;70(14):1012-1026.DOI: 10.1080/00914037.2020.1776282.

Li L, Huh KM, Lee YK, Kim SY. Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery. Macromol Res. 2010;18:153-161.DOI: 10.1007/s13233-009-0134-8.

Emami J, Kazemi M, Salehi A. In vitro and in vivo evaluation of two hydroxychloroquine tablet formulations: HPLC assay development. J Chromatogr Sci. 2021;59(1):71-78.DOI: 10.1093/chromsci/bmaa079.

Midelfart A, Dybdahl A, Müller N, Sitter B, Gribbestad IS, Krane J. Dexamethasone and dexamethasone phosphate detected by 1H and 19F NMR spectroscopy in the aqueous humour. Exp Eye Res. 1998;66(3):327-337.DOI: 10.1006/exer.1997.0429.

Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin‐loaded polymeric micelle overcomes multidrug resistance of cancer by double‐targeting folate receptor and early endosomal pH. Small. 2008;4(11):2043-2050. DOI: 10.1002/smll.200701275.

Yang X, Cai X, Yu A, Xi Y, Zhai G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci. 2017;496:311-326.DOI: 10.1016/j.jcis.2017.02.033.

Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release. 1998;55(2-3):219-229.DOI: 10.1016/s0168-3659(98)00054-6.

Taymouri S, Varshosaz J, Hassanzadeh F, Haghjooy Javanmard S, Dana N. Optimisation of processing variables effective on self‐assembly of folate targeted Synpronic‐based micelles for docetaxel delivery in melanoma cells. IET Nanobiotechnol. 2015;9(5): 306-313.DOI: 10.1049/iet-nbt.2014.0076.

Gill KK, Nazzal S, Kaddoumi A. Paclitaxel loaded PEG(5000)-DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur J Pharm Biopharm. 2011;79(2):276-284.DOI: 10.1016/j.ejpb.2011.04.017.

Huang X, Liao W, Zhang G, Kang S, Zhang CY. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int J Nanomedicine. 2017;12:2215-2226.DOI: 10.2147/IJN.S130037.

Kim SY, Shin IG, Lee YM, Cho CS, Sung YK. Methoxy poly (ethylene glycol) and ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: II. Micelle formation and drug release behaviours. J Control Release. 1998;51(1):13-22.DOI: 10.1016/s0168-3659(97)00124-7.

Shin IG, Kim SY, Lee YM, Cho CS, Sung YK. Methoxy poly (ethylene glycol)/ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: I. Preparation and characterization. J Control Release. 1998;51(1):1-11.DOI: 10.1016/s0168-3659(97)00164-8.

La SB, Okano T, Kataoka K. Preparation and characterization of the micelle‐forming polymeric drug indomethacin‐incorporated poly (ethylene oxide)-poly (β‐benzyl L‐aspartate) block copolymer micelles. J Pharm Sci. 1996;85(1):85-90.DOI: 10.1021/js950204r.

Parikh K, Singh S, Kumar S. Self assembly in an aqueous gemini surfactant containing sugar based (isosorbide) spacer. Arab J Chem. 2020;13(1): 1848-1857.DOI: 10.1016/j.arabjc.2018.01.020.

Wu W, Yao W, Wang X, Xie C, Zhang J, Jiang X. Bioreducible heparin-based nanogel drug delivery system. Biomaterials. 2015;39:260-268.DOI: 10.1016/j.biomaterials.2014.11.005.

Jeong YI, Nah JW, Lee HC, Kim SH, Cho CS. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int J Pharm. 1999;188(1):49-58.DOI: 10.1016/S0378-5173(99)00202-1.

Ryu JG, Jeong YI, Kim IS, Lee JH, Nah JW, Kim SH. Clonazepam release from core-shell type nanoparticles of poly(ε-caprolactone)/poly(ethylene glycol)/poly(ε-caprolactone) triblock copolymers. Int J Pharm. 2000;200(2):231-242.DOI: 10.1016/S0378-5173(00)00392-6.

Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-1603.DOI: 10.1126/science.8128245.

Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics. 2021;13(3):326,1-38.DOI: 10.3390/pharmaceutics13030326.

Kumar P, Huo P, Liu B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics. 2019;11(8):381,1-28.DOI: 10.3390/pharmaceutics11080381.

Alam F, Al-Hilal TA, Chung SW, Park J, Mahmud F, Seo D, et al. Functionalized heparin-protamine based self-assembled nanocomplex for efficient anti-angiogenic therapy. J Control Release. 2015;197:180-9.DOI: 10.1016/j.jconrel.2014.11.009.

Alibolandi M, Abnous K, Hadizadeh F, Taghdisi SM, Alabdollah F, Mohammadi M, et al. Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo. J Control Release. 2016;241:45-56.DOI: 10.1016/j.jconrel.2016.09.012.

Zamani M, Rostamizadeh K, Kheiri Manjili H, Danafar H. In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. European Polymer Journal. 2018;103:260-270. DOI: 10.1016/j.eurpolymj.2018.04.020


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.