Prognostic markers and molecular pathways in primary colorectal cancer with a high potential of liver metastases: a systems biology approach

Fatemeh Bahramibanan , Amir Taherkhani , Rezvan Najafi, Neda Alizadeh, Hamidreza Ghadimipour, Nastaran Barati, Katayoun Derakhshandeh, Meysam Soleimani

Abstract


Background and purpose: Colorectal cancer (CRC) holds the position of being the third most prevalent cancer and the second primary cause of cancer-related fatalities on a global scale. Approximately 65% of CRC patients survive for 5 years following diagnosis. Metastasis and recurrence frequently occur in half of CRC patients diagnosed at the late stage. This study used bioinformatics analysis to identify key signaling pathways, hub genes, transcription factors, and protein kinases involved in transforming primary CRC with liver metastasis potential. Prognostic markers in CRC were also identified.

Experimental approach: The GSE81582 dataset was re-analyzed to identify differentially expressed genes (DEGs) in early CRC compared to non-tumoral tissues. A protein interaction network (PIN) was constructed, revealing significant modules and hub genes. Prognostic markers, transcription factors, and protein kinases were determined. Boxplot and gene set enrichment analyses were performed.

Findings/Results: This study identified 1113 DEGs in primary CRC compared to healthy controls. PIN analysis revealed 75 hub genes and 8 significant clusters associated with early CRC. The down-regulation of SUCLG2 and KPNA2 correlated with poor prognosis. SIN3A and CDK6 played crucial roles in early CRC transformation, affecting rRNA processing pathways.

Conclusion and implications: This study demonstrated several pathways, biological processes, and genes mediating the malignant transformation of healthy colorectal tissues to primary CRC and may help the prognosis and treatment of patients with early CRC.

 

 


Keywords


Biomarkers; Cancer; CRC; Pathogenesis; Pathway; Prognosis.

Full Text:

PDF

References


Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021;14(10):101174,1-7.DOI: 10.1016/j.tranon.2021.101174.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.DOI: 10.3322/caac.21551.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.DOI: 10.3322/caac.21492.

Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Najafi R. Aptamer-conjugated nanoliposomes containing COL1A1 siRNA sensitize CRC cells to conventional chemotherapeutic drugs. Colloids Surf B Biointerfaces. 2022;218:112714.DOI: 10.1016/j.colsurfb.2022.112714.

Noei A, Nili-Ahmadabadi A, Soleimani M. The enhanced cytotoxic effects of the p28-apoptin chimeric protein as a novel anti-cancer agent on breast cancer cell lines. Drug Res. 2019;69(03):144-150.DOI: 10.1055/a-0654-4952.

Soleimani M, Mahnam K, Mirmohammad-Sadeghi H, Sadeghi-Aliabadi H, Jahanian-Najafabadi A. Theoretical design of a new chimeric protein for the treatment of breast cancer. Res Pharm Sci. 2016;11(3):187-199.PMID: 27499788.

Lichtenstern CR, Ngu RK, Shalapour S, Karin M. Immunotherapy, inflammation and colorectal cancer. Cells. 2020;9(3):618,1-18.DOI: 10.3390/cells9030618.

Madadi S, Soleimani M. Comparison of miR-16 and cel-miR-39 as reference controls for serum miRNA normalization in colorectal cancer. J Cell Biochem. 2019;120(4):4802-4803.DOI: 10.1002/jcb.28174.

Bijari N, Ghobadi S, Derakhshandeh K. β-lactoglobulin-irinotecan inclusion complex as a new targeted nanocarrier for colorectal cancer cells. Res Pharm Sci. 2019;14(3):216-227.DOI: 10.4103/1735-5362.258488.

Wolf AMD, Fontham ETH, Church TR, Flowers CR, Guerra CE, LaMonte SJ, et al. Colorectal cancer screening for average‐risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J Clin. 2018;68(4):250-281.DOI: 10.3322/caac.21457.

Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. Systematic review of blood diagnostic markers in colorectal cancer. Tech Coloproctol. 2018;22(7):481-498.DOI: 10.1007/s10151-018-1820-3.

Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177-193.DOI: 10.3322/caac.21395.

Sayagués JM, Corchete LA, Gutiérrez ML, Sarasquete ME, del Mar Abad M, Bengoechea O, et al. Genomic characterization of liver metastases from colorectal cancer patients. Oncotarget. 2016;7(45):72908-72922.DOI: 10.18632/oncotarget.12140.

Van Cutsem E, Cervantes A, Nordlinger B, Arnold D. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl. 3):iii1-9.DOI: 10.1093/annonc/mdu260.

Kopetz S, Chang GJ, Overman MJ, Eng C, Sargent DJ, Larson DW, et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009;27(22):3677-3683.DOI: 10.1200/JCO.2008.20.5278.

Augestad KM, Lindsetmo RO, Stulberg J, Reynolds H, Senagore A, Champagne B, et al. International preoperative rectal cancer management: staging, neoadjuvant treatment, and impact of multidisciplinary teams. World J Surg. 2010;34:2689-2700.DOI: 10.1007/s00268-010-0738-3.

Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 2010;138(3):958-968.DOI: 10.1053/j.gastro.2009.11.005.

Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940-3947.DOI: 10.1200/JCO.2003.05.013.

Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182-1191.DOI: 10.1016/S1470-2045(17)30422-9.

Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, et al. EMT is the dominant program in human colon cancer. BMC Med Genomics. 2011;4(1):1-10.DOI: 10.1186/1755-8794-4-9.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2013;41(D1):D991-D995.DOI: 10.1093/nar/gks1193.

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D612.DOI: 10.1093/nar/gkaa1074.

Bayat Z, Ahmadi-Motamayel F, Parsa MS, Taherkhani A. Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study. Genomics Inform. 2021;19(4):1-17.DOI: 10.5808/gi.21052.

Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069-1076.DOI: 10.1038/nmeth.2212.

Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: a pilot study. Gene Rep. 2021;24:101243,1-13.DOI: 10.1016/j.genrep.2021.101243.

Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g: Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016;44(W1):W83-W89.DOI: 10.1093/nar/gkw199.

Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, et al. The Ensembl genome database project. Nucleic Acids Res. 2002;30(1):38-41.DOI: 10.1093/nar/30.1.38.

Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, et al. Ensembl Genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res. 2020;48(D1):D689-D695. DOI: 10.1093/nar/gkz890.

Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite- a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2-10.DOI: 10.1016/j.molbiopara.2016.11.005.

Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545-D551.DOI: 10.1093/nar/gkaa970.

Croft D, O’kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691-D697.DOI: 10.1093/nar/gkq1018.

Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018;46(D1):D661-D667.DOI: 10.1093/nar/gkx1064.

Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Saidijam M. Identification of key gene targets for sensitizing colorectal cancer to chemoradiation: an integrative network analysis on multiple transcriptomics data. J Gastrointest Cancer. 2022;53(3):649-668.DOI: 10.1007/s12029-021-00690-2.

Tao W, Radstake TR, Pandit A. RegEnrich gene regulator enrichment analysis reveals a key role of the ETS transcription factor family in interferon signaling. Commun Biol. 2022;5(1):1-12.DOI: 10.1038/s42003-021-02991-5.

Janky Rs, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014;10(7):e1003731,1-19.DOI: 10.1371/journal.pcbi.1003731.

Bryne JC, Valen E, Tang MHE, Marstrand T, Winther O, da Piedade I, et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 2008;36(Database issue): D102-D106.DOI: 10.1093/nar/gkm955.

Gentleman R. R programming for bioinformatics (Chapman & Hall/CRC Computer Science & Data Analysis). 1st Edition. New York:Chapman and Hall/CRC;2009.

Xiong J. Essential bioinformatics. 1st edition. New York:Cambridge University Press; 2006.

Köstler WJ and Zielinski CC. Targeting receptor tyrosine kinases in cancer. In: Receptor tyrosine kinases: structure, functions and role in human disease. New York: Springer; 2015. pp. 225-278.DOI: 10.1007/978-1-4939-2053-2_10.

Kittler H, Tschandl P. Driver mutations in the mitogen-activated protein kinase pathway: the seeds of good and evil. Br J Dermatol. 2018;178:26-27.DOI: 10.1111/bjd.16119.

Maurer G, Tarkowski B, Baccarini M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene. 2011;30(32):3477-3488.DOI: 10.1038/onc.2011.160.

Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48,1-20.DOI: 10.1186/s12943-018-0804-2.

Mahfuz A, Zubair-Bin-Mahfuj A, Podder DJ. A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma. Genomics Inform. 2021;19(2),1-14.DOI: 10.5808/gi.21019.

Lachmann A, Ma'ayan A. KEA: kinase enrichment analysis. Bioinformatics. 2009;25(5):684-686.DOI: 10.1093/bioinformatics/btp026.

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-W102. DOI: 10.1093/nar/gkx247.

Consortium G. The Genotype-Tissue Expression (GTEx) pilot analysis: multi tissue gene regulation in humans. Science. 2015;348(6235):648-660.DOI: 10.1126/science.1262110.

Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68-A77.

Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10(1):1-5.DOI: 10.1038/s41598-020-76603-3.

Binns D, Dimmer E, Huntley R, Barrell D, O'donovan C, Apweiler R. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics. 2009;25(22):3045-3406. DOI: 10.1093/bioinformatics/btp536.

Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41-42.DOI: 10.1038/35075138.

Gao QZ, Qin Y, Wang WJ, Fei BJ, Han WF, Jin JQ, et al. Overexpression of AMPD2 indicates poor prognosis in colorectal cancer patients via the Notch3 signaling pathway. World J Clin Cases. 2020;8(15):3197-3208.DOI: 10.12998/wjcc.v8.i15.3197.

Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J, Jurickova I, et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun. 2019;10(1):1-13.DOI: 10.1038/s41467-018-07841-3.

Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut microbes. 2020;11(3):285-304.DOI: 10.1080/19490976.2019.1592421.

Zhang W, Lin L, Xia L, Cai W, Dai W, Zou C, et al. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients. J Transl Med. 2021;19(1):1-16.DOI: 10.1186/s12967-021-02939-7.

Nagao T, Shintani Y, Hayashi T, Kioka H, Kato H, Nishida Y, et al. Higd1a improves respiratory function in the models of mitochondrial disorder. FASEB J. 2020;34(1):1859-1571.DOI: 10.1096/fj.201800389R.

Chinopoulos C, Batzios S, van den Heuvel LP, Rodenburg R, Smeets R, Waterham HR, et al. Mutated SUCLG1 causes mislocalization of SUCLG2 protein, morphological alterations of mitochondria and an early-onset severe neurometabolic disorder. Mol Genet Metab. 2019;126(1):43-52.DOI: 10.1016/j.ymgme.2018.11.009.

Writzl K, Maver A, Kovačič L, Martinez-Valero P, Contreras L, Satrustegui J, et al. De novo mutations in SLC25A24 cause a disorder characterized by early aging, bone dysplasia, characteristic face, and early demise. Am J Hum Genet. 2017;101(5):844-855.DOI: 10.1016/j.ajhg.2017.09.017.

Dobolyi A, Bagó AG, Gál A, Molnár MJ, Palkovits M, Adam-Vizi V, et al. Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain. J Bioenerg Biomembr. 2015;47(1-2):33-41.DOI: 10.1007/s10863-014-9586-4.

Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin α. J Biol Chem. 2007;282(8):5101-5105.DOI: 10.1074/jbc.R600026200.

Tseng SF, Chang CY, Wu KJ, Teng SC. Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem. 2005;280(47):39594-39600.DOI: 10.1074/jbc.M508425200.

Gluz O, Wild P, Meiler R, Diallo‐Danebrock R, Ting E, Mohrmann S, et al. Nuclear karyopherin α2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer Res. 2008;123(6):1433-1438. DOI: 10.1002/ijc.23628.

Sakai M, Sohda M, Miyazaki T, Suzuki S, Sano A, Tanaka N, et al. Significance of karyopherin-α 2 (KPNA2) expression in esophageal squamous cell carcinoma. Anticancer Res. 2010;30(3):851-856.PMID: 20393006.

Altan B, Yokobori T, Mochiki E, Ohno T, Ogata K, Ogawa A, et al. Nuclear karyopherin-α2 expression in primary lesions and metastatic lymph nodes was associated with poor prognosis and progression in gastric cancer. Carcinogenesis. 2013;34(10):2314-2321.DOI: 10.1093/carcin/bgt214.

Takada T, Tsutsumi S, Takahashi R, Ohsone K, Tatsuki H, Suto T, et al. KPNA2 over-expression is a potential marker of prognosis and therapeutic sensitivity in colorectal cancer patients. J Surg Oncol. 2016;113(2):213-217.DOI: 10.1002/jso.24114.

Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab. 2015;26(4):176-184.DOI: 10.1016/j.tem.2015.01.008,

Chen Z, Guo Y, Zhao D, Zou Q, Yu F, Zhang L, Xu L. Comprehensive analysis revealed that CDKN2A is a biomarker for immune infiltrates in multiple cancers. Front Cell Dev Biol. 2021; 9:808208,1-13.DOI: 10.3389/fcell.2021.808208.

Royds JA, Pilbrow AP, Ahn A, Morrin HR, Frampton C, Russell IA, et al. The rs11515 polymorphism is more frequent and associated with aggressive breast tumors with increased ANRIL and decreased p16 INK4a expression. Front Oncol. 2016;5:306,1-9.DOI: 10.3389/fonc.2015.00306.

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509-1512.DOI: 10.1126/science.281.5382.1509.

Lievre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374-379.DOI: 10.1200/JCO.2007.12.5906.

Takeuchi H, Bilchik A, Saha S, Turner R, Wiese D, Tanaka M, et al. c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res. 2003;9(4):1480-1488.PMID: 12684423.

Grzenda A, Lomberk G, Zhang JS, Urrutia R. Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta. 2009;1789(6-8):443-450.DOI: 10.1016/j.bbagrm.2009.05.007.

Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997;89(3):341-347.DOI: 10.1016/S0092-8674(00)80214-7.

Jafari H, Hussain S, Campbell MJ. Nuclear receptor coregulators in hormone-dependent cancers. Cancers. 2022;14(10):2402,1-30.DOI: 10.3390/cancers14102402.

Dannenberg J-H, David G, Zhong S, Van Der Torre J, Wong WH, DePinho RA. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 2005;19(13):1581-1595.DOI: 10.1101/gad.1286905.

Ren J, Li X, Dong H, Suo L, Zhang J, Zhang L, et al. miR-210-3p regulates the proliferation and apoptosis of non-small cell lung cancer cells by targeting SIN3A. Exp Ther Med. 2019;18(4):2565-2573.DOI: 10.3892/etm.2019.7867.

Nan S, Zhang S, Jin R, Wang J. LINC00665 up-regulates SIN3A expression to modulate the progression of colorectal cancer via sponging miR-138-5p. Cancer Cell Int. 2022;22(1):1-12.DOI: 10.1186/s12935-021-02176-4.

Nebenfuehr S, Kollmann K, Sexl V. The role of CDK6 in cancer. Int J Cancer Res. 2020;147(11):2988-2995.DOI: 10.1002/ijc.33054.

Wang H, Nicolay BN, Chick JM, Gao X, Geng Y, Ren H, et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature. 2017;546(7658):426-430.DOI: 10.1038/nature22797.

Liu Y, Tang W, Ren L, Liu T, Yang M, Wei Y, et al. Activation of miR-500a-3p/CDK6 axis suppresses aerobic glycolysis and colorectal cancer progression. J Transl Med. 2022;20(1):106,1-12.DOI: 10.1186/s12967-022-03308-8.

Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbioms. 2017;3:34,1-12.DOI: 10.1038/s41522-017-0040-3.

Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Jamal R. 16S rRNA gene sequencing for deciphering the colorectal cancer gut microbiome: current protocols and workflows. Front Microbiol. 2018;9:767,1-10.DOI: 10.3389/fmicb.2018.00767.

Salehi Z, Haddad P, Tavallaei O. Prediction of biomarker miRNAs signature in colorectal cancer metastasis to liver cancer.Electron J Gen Med. 2018;16(1):1-11. DOI: 10.29333/ejgm/93467.

Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153-166.DOI: 10.1038/nrc2602.

Bai J, Li Y, Zhang G. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med. 2017;14(4):348-362.DOI: 10.20892/j.issn.2095-3941.2017.0033.

Wang CI, Wang CL, Wang CW, Chen CD, Wu CC, Liang Y, et al. Importin subunit alpha‐2 is identified as a potential biomarker for non‐small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome. Int J Cancer. 2011;128(10):2364-2372.DOI: 10.1002/ijc.25568.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.