The development of mitochondria-targeted quercetin for rescuing Sertoli cells from oxidative stress
Abstract
Background and purpose: The imbalance between reactive oxygen species (ROS) production and endogenous antioxidant capacity leads to oxidative stress, which may damage several cellular functions, particularly spermatogenesis. This condition is a leading cause of male infertility, so controlling ROS levels is crucial. The ROS level can be controlled by supporting the endogenous antioxidant system through antioxidant therapy. Mitochondria are the prime target for antioxidant therapy due to the majority of endogenous ROS produced in mitochondria and their critical role in providing energy during fertilization. This research aimed to develop mitochondria-targeted hybrid nanoplatforms by combining liposomes with dequalinium's mitochondriotropic agent (DQ) to deliver quercetin for targeted antioxidant therapy to mitochondria.
Experimental approach: The quercetin-loaded nanocarrier was constructed using the hydration method. We varied the concentration of DQ to investigate its impact on physical characteristics, encapsulation efficiency, intracellular trafficking, and in vitro antioxidant activity.
Findings/Results: The impact of different DQ densities on particle size, encapsulation efficiency, and mitochondria targeting was insignificant. However, lowering the DQ density reduced the zeta potential. Minimizing oxidative stress on TM4 cells was only achieved with low-density DQ (Q-LipoDQ LD), while high-density DQ (Q-LipoDQ HD) failed to mitigate the negative impact.
Conclusion and implications: According to the findings, LipoDQ LD preserves a promising potential as mitochondria-targeted nanoplatforms and validates the importance of mitochondria as a target for antioxidant therapy.
Keywords
Full Text:
PDFReferences
Tremellen K. Oxidative stress and male infertility-a clinical perspective. Hum Reprod Update. 2008;14(3):243-258.DOI: 10.1093/humupd/dmn004.
Andersen JM, Rønning PO, Herning H, Bekken SD, Haugen TB, Witczak O. Fatty acid composition of spermatozoa is associated with BMI and with semen quality. Andrology. 2016;4(5):857-865.DOI: 10.1111/andr.12227.
Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963-974.PMID: 16315393.
Nowak JZ. Oxidative stress, polyunsaturated fatty acidsderived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Reports. 2013;65(2):288-304.DOI: 10.1016/S1734-1140(13)71005-3.
Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed. 2016;14(4):231-240.PMID: 27351024.
Kowalczyk A. The role of the natural antioxidant mechanism in sperm cells. Reprod Sci. 2022;29(5):1387-1394.DOI: 10.1007/s43032-021-00795-w.
Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;2019:1-17.DOI: 10.1155/2019/6175804.
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7-15.DOI: 10.1083/jcb.201102095.
Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne). 2014;5(56):1-4.DOI: 10.3389/fendo.2014.00056.
Alahmar A. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12(1):4-18.DOI: 10.4103/jhrs.JHRS_150_18.
Vertika S, Singh KK, Rajender S. Mitochondria, spermatogenesis, and male infertility - an update. Mitochondrion. 2020;54:26-40.DOI: 10.1016/j.mito.2020.06.003.
Varuzhanyan G, Rojansky R, Sweredoski MJ, Graham RLJ, Hess S, Ladinsky MS, et al. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. Elife. 2019;8:1-27.DOI: 10.7554/eLife.51601.
Yamada Y, Satrialdi, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev. 2020;154-155:187-209.DOI: 10.1016/j.addr.2020.09.010.
Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71(6):1056-1063.DOI: 10.1161/HYPERTENSIONAHA.117.10787.
Zupančič Š, Kocbek P, Zariwala MG, Renshaw D, Gul MO, Elsaid Z, et al. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol Pharm. 2014;11(7):2334-2345.DOI: 10.1021/mp500003q.
Wu J, Zhang M, Hao S, Jia M, Ji M, Qiu L, et al. Mitochondria-targeted peptide reverses mitochondrial dysfunction and cognitive deficits in sepsis-associated encephalopathy. Mol Neurobiol. 2015;52(1):783-791.DOI: 10.1007/s12035-014-8918-z.
Kubota F, Satrialdi, Takano Y, Maeki M, Tokeshi M, Harashima H, et al. Fine‐tuning the encapsulation of a photosensitizer in nanoparticles reveals the relationship between internal structure and phototherapeutic effects. J Biophotonics. 2023;16(3):1-11.DOI: 10.1002/jbio.202200119.
Trnka J, Elkalaf M, Anděl M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS One. 2015;10(4):e0121837,1-14.DOI: 10.1371/journal.pone.0121837.
Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res. 1998;15(2):334-337.DOI: 10.1023/a:1011991307631.
Weissig V, Lizano C, Torchilin VP. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv. 2000;7(1):1-5.DOI: 10.1080/107175400266722.
García-Pérez AI, Galeano E, Nieto E, Sancho P. Dequalinium induces human leukemia cell death by affecting the redox balance. Leuk Res. 2011;35(10):1395-1401.DOI: 10.1016/j.leukres.2011.03.012.
Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal. 2020;10(3):178-182.DOI: 10.38212/2224-6614.2748.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):1-15.DOI: 10.1038/nmeth.2019.
Adler J, Parmryd I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom Part A. 2010;77(8):733742.DOI: 10.1002/cyto.a.20896.
Satrialdi, Takano Y, Hirata E, Ushijima N, Harashima H, Yamada Y. An effective in vivo mitochondria-targeting nanocarrier combined with a π-extended porphyrin-type photosensitizer. Nanoscale Adv. 2021;3(20):5919-5927.DOI: 10.1039/D1NA00427A.
Sauvage F, Legrand FX, Roux M, Rajkovic I, Weiss TM, Varga Z, et al. Interaction of dequalinium chloride with phosphatidylcholine bilayers: a biophysical study with consequences on the development of lipid-based mitochondrial nanomedicines. J Colloid Interface Sci. 2019;537:704-715.DOI: 10.1016/j.jcis.2018.11.059.
Anand David A, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-89.DOI: 10.4103/0973-7847.194044.
Batiha GES, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, et al. The Pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374,1-16.DOI: 10.3390/foods9030374.
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24(6):1123,1-15.DOI: 10.3390/molecules24061123.
Cardarelli F, Pozzi D, Bifone A, Marchini C, Caracciolo G. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharm. 2012;9(2):334-340.DOI: 10.1021/mp200374e.
Liu DZ, Chen WY, Tasi LM, Yang SP. Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids Surfaces A Physicochem Eng Asp. 2000;172(1-3):57-67.DOI: 10.1016/S0927-7757(00)00560-4.
Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231-242.DOI: 10.1007/s13346-015-0220-8.
Bae Y, Jung MK, Song SJ, Green ES, Lee S, Park HS, et al. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 2017;37:27-40.
Mitochondrion. 2017;37:27-40.DOI: 10.1016/j.mito.2017.06.005.
Lin M, Qi XR. Purification method of drug-loaded liposome. In: Wan-Liang L, Xian-Rong Q. Liposome-based drug delivery systems. 2019. pp. 1-11.DOI: 10.1007/978-3-662-49231-4_24-1.
Liu D, Hu H, Lin Z, Chen D, Zhu Y, Hou S, et al. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J Photochem Photobiol B. 2013;127:8-17.DOI: 10.1016/j.jphotobiol.2013.07.014.
Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412-422.DOI: 10.1007/s13197-011-0251-1.
Matfier JP. Establishment and characterization of two distinct mouse testicular epithelial cell line. Biol Reprod. 1980;23(1):243-252.DOI: 10.1095/biolreprod23.1.243.
Wu L, Dong H, Zhao J, Wang Y, Yang Q, Jia C, et al. Diosgenin stimulates rat TM4 cell proliferation through activating plasma membrane translocation and transcriptional activity of estrogen receptors1. Biol Reprod. 2015;92(1):24,1-10.DOI: 10.1095/biolreprod.114.124206.
Ni Z, Sun W, Li R, Yang M, Zhang F, Chang X, et al. Fluorochloridone induces autophagy in TM4 Sertoli cells: involvement of ROS-mediated AKT-mTOR signaling pathway. Reprod Biol Endocrinol. 2021;19(1):64,1-13.DOI: 10.1186/s12958-021-00739-8.
Luo Y, Mohsin A, Xu C, Wang Q, Hang H, Zhuang Y, et al. Co-culture with TM4 cells enhances the proliferation and migration of rat adipose-derived mesenchymal stem cells with high stemness. Cytotechnology. 2018;70(5):1409-1422.DOI: 10.1007/s10616-018-0235-3.
Kristoffersen AS, Erga SR, Hamre B, Frette Ø. Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: rhodamine B, coumarin 6 and lucifer yellow. J Fluoresc. 2014;24(4):1015-1024.DOI: 10.1007/s10895-014-1368-1.
Zhang X, Lin C, Lu A, Lin G, Chen H, Liu Q, et al. Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma. Drug Deliv. 2017;24(1):986-998.DOI: 10.1080/10717544.2017.1340361.
Gokce EH, Korkmaz E, Tuncay-Tanriverdi, Dellera E, Sandri G, Bonferoni MC, et al. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int J Nanomedicine. 2012;7:5109-5117.DOI: 10.2147/IJN.S34921.
Chen L, Wu X, Shen T, Wang X, Wang S, Wang J, et al. Protective effects of ethyl gallate on H2O2-induced mitochondrial dysfunction in PC12 cells. Metab Brain Dis. 2019;34(2):545-555.DOI: 10.1007/s11011-019-0382-z.
Refbacks
- There are currently no refbacks.
