Dietary silymarin supplementation enhances chemotherapy efficacy of capecitabine and irinotecan and mitigates hepatotoxicity in a mouse model of colon cancer
Abstract
Background and purpose: The flavonoid silymarin (SMN) has shown promise due to its antioxidant, anti-inflammatory, and anticancer properties. SMN has been widely used in preclinical and clinical studies to treat various types of cancer, alone and with chemotherapy agents. Recent research suggests that SMN may increase conventional chemotherapy efficacy and reduce adverse effects. Herein, we investigated the therapeutic efficacy of SMN and its combination with capecitabine (CAP) and irinotecan (IRI) in a mouse model of colon cancer.
Experimental approach: Following 1,2 dimethylhydrazine-induced colon cancer, a modified diet supplemented with SMN (2500 ppm) and mono- and combined therapy of CAP and IRI was used. Serum samples were analyzed for lipid profile, liver function, and inflammatory cytokines. Oxidative stress and inflammation markers, including malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in colonic, hepatic, and circulatory samples. Colonic BAX and Bcl-2 levels were examined via western blotting and histopathological analysis of colon sections was conducted.
Findings/Results: SMN alone and combined with chemotherapeutic agents significantly mitigated the elevated inflammatory cytokines liver function enzyme levels, and hyperlipidemia. Furthermore, SMN supplementation with chemotherapy agents enhanced antioxidant activity and reduced lipid peroxidation and inflammatory markers. Significant upregulation of BAX and downregulation of Bcl-2 were observed. In addition, treatment regimens ameliorated carcinogen-induced polyp multiplicity, adenoma formation, dysplastic changes, and lymphocytic aggregation.
Conclusion and implications: Our results demonstrated that the potential anticancer properties of SMN could enhance chemotherapy efficacy and reduce carcinogen- and chemotherapy-induced hepatotoxicity.
Keywords
Full Text:
PDFReferences
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174,1-7.DOI: 10.1016/j.tranon.2021.101174.
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2): 89-103.DOI: 10.5114/pg.2018.81072.
Jucá MJ, Bandeira BC, Carvalho DS, Leal AT. Comparative study of 1, 2-dimethylhydrazine and azoxymethane on the induction of colorectal cancer in rats. J Coloproctol (Rio J). 2014;34(3):167-173.DOI: 10.1016/j.jcol.2014.06.003.
Venkatachalam K, Vinayagam R, Arokia Vijaya Anand M, Isa NM, Ponnaiyan R. Biochemical and molecular aspects of 1, 2-dimethylhydrazine (DMH)-induced colon carcinogenesis:a review. Toxicol. Res. 2020;9(1):2-18.DOI: 10.1093/toxres/tfaa004.
Hamiza OO, Rehman MU, Tahir M, Khan R, Khan AQ, Lateef A, et al. Amelioration of 1, 2 Dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac J Cancer Prev. 2012;13(9):4393-4402.DOI: 10.7314/apjcp.2012.13.9.4393.
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735,1-26.DOI: 10.3390/biom9110735.
Guéraud F. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med. 2017;111:196-208.DOI: 10.1016/j.freeradbiomed.2016.12.025.
Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1): 22-28.DOI: 10.4103/jcrt.JCRT_862_16.
Bhagat SS, Ghone RA, Suryakar AN, Hundekar PS. Lipid peroxidation and antioxidant vitamin status in colorectal cancer patients. Indian J Physiol Pharmacol. 2011;55(1): 72-76.PMID: 22315813.
Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Ann Afr Med. 2019;18(3):121-126.DOI: 10.4103/aam.aam_56_18.
Jang JY, Kim D, Kim ND. Recent developments in combination chemotherapy for colorectal and breast cancers with topoisomerase inhibitors. Int J Mol Sci. 2023;24(9):8457,1-17.DOI: 10.3390/ijms24098457.
Fuchs C, Mitchell EP, Hoff PM. Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev. 2006;32(7):491-503.DOI: 10.1016/j.ctrv.2006.07.001.
Kciuk M, Marciniak B, Kontek R. Irinotecan—still an important player in cancer chemotherapy: a comprehensive overview. Int J Mol Sci. 2020;21(14):4919,1-21.DOI: 10.3390/ijms21144919.
Lopatriello S, Amoroso D, Donati S, Alabiso O, Forti L, Fornasiero A, et al. The CAP-CR study:direct medical costs in Italian metastatic colorectal cancer patients on first-line infusional 5-fluorouracil or oral capecitabine. Eur J Cancer. 2008;44(17):2615-2622.DOI: 10.1016/j.ejca.2008.08.010.
Mohammadian M, Zeynali S, Azarbaijani AF, Ansari MHK, Kheradmand F. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res Pharm Sci. 2017;12(6):517-525.DOI: 10.4103/1735-5362.217432.
Laudani A, Agostara B, Savio G, Leonardi V, Salvagno L, Palmisano V, et al. Capecitabine plus irinotecan (CAPIRI) as first-line treatment for patients (pts) with metastatic colorectal cancer (MCRC). J Clin Oncol. 2006;24(18_suppl):13573.DOI: 10.1200/jco.2006.24.18_suppl.13573.
Saif MW, Katirtzoglou NA, Syrigos KN. Capecitabine:an overview of the side effects and their management. Anticancer Drugs. 2008;19(5):447-464.DOI: 10.1097/CAD.0b013e3282f945aa.
Khajeh E, Rasmi Y, Kheradmand F, Malekinejad H, Aramwit P, Saboory E, et al. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci. 2020;15(6):592-601.DOI: 10.4103/1735-5362.301344.
Kolinsky K, Zhang YE, Dugan U, Heimbrook D, Packman K, Higgins B. Novel regimens of capecitabine alone and combined with irinotecan and bevacizumab in colorectal cancer xenografts. Anticancer Res. 2009;29(1):91-98.PMID: 19331137.
Saller R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs. 2001;61(14):2035-2063.DOI: 65/00003495-200161140-00003.
Bahmani M, Shirzad H, Rafieian S, Rafieian-Kopaei M. Silybum marianum:beyond hepatoprotection. J Evid Based Complementary Altern Med. 2015;20(4):292-301.
DOI: 77/2156587215571116.
Esmaeil N, Anaraki SB, Gharagozloo M, Moayedi B. Silymarin impacts on immune system as an immunomodulator:One key for many locks. Int Immunopharmacol. 2017;50:194-201.DOI: 10.1016/j.intimp.2017.06.030.
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy:mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods. 2023;100:05384,1-12.DOI: 16/j.jff.2022.105384.
da Silva Duarte V, dos Santos Cruz BC, Tarrah A, Sousa Dias R, de Paula Dias Moreira L, Lemos Junior WJF, et al. Chemoprevention of DMH-induced early colon carcinogenesis in male BALB/c mice by administration of lactobacillus paracasei DTA81. Microorganisms. 2020;8(12):1994,1-22.DOI: 10.3390/microorganisms8121994.
Volate SR, Davenport DM, Muga SJ, Wargovich MJ. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis. 2005;26(8):1450-1456.DOI: 10.1093/carcin/bgi089.
Huang LX, Zhong MY, Dan D, Yang XM, Qiu H, Guo P. Combination of capecitabine and ludartin inhibits colon cancer growth in mice. Trop J Pharm Res. 2017;16(11):2623-2628.DOI: 10.4314/tjpr.v16i11.8.
Oršolić N, Benković V, Lisičić D, Đikić D, Erhardt J, Horvat Knežević A. Protective effects of propolis and related polyphenolic/flavonoid compounds against toxicity induced by irinotecan. Med Oncol. 2010;27(4):1346-1358.DOI: 10.1007/s12032-009-9387-5.
Niehaus Jr W, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6(1): 126-130.DOI: 11/j.1432-1033.1968.tb00428.x.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131-138.DOI: 16/0003-2697(82)90118-X.
Cuzzocrea S, Ianaro A, Wayman NS, Mazzon E, Pisano B, Dugo L, et al. The cyclopentenone prostaglandin 15‐deoxy‐Δ12, 14‐PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat. Br J Pharmacol. 2003;138(4) 678-688.DOI: 38/sj.bjp.0705077.
Classics Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.PMID: 14907713.
Suzuki R, Kohno H, Sugie S, Tanaka T. Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane. Histol Histopathol. 2005;20(2):483-492.DOI: 670/HH-20.483.
Pereira-Wilson C. Can dietary flavonoids be useful in the personalized treatment of colorectal cancer? World J Gastrointest Oncol. 2022;14(6):1115-1123.DOI: 251/wjgo.v14.i6.1115.
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, et al. New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol. 2022;13:964793,1-16.DOI: 10.3389/fphar.2022.964793.
Thangaraj K, Natesan K, Settu K, Palani M, Govindarasu M, Subborayan V, et al. Orientin mitigates 1, 2-dimethylhydrazine induced lipid peroxidation, antioxidant and biotransforming bacterial enzyme alterations in experimental rats. J Cancer Res Ther. 2018;14(6):1379-1388.DOI: 10.4103/jcrt.JCRT_1363_16.
Manju V, Nalini N. Chemopreventive efficacy of ginger, a naturally occurring anticarcinogen during the initiation, post-initiation stages of 1, 2 dimethylhydrazine-induced colon cancer. Clin Chim Acta. 2005;358(1-2): 60-67.DOI: 10.1016/j.cccn.2005.02.018.
Hong TT, Shen D, Chen XP, Wu XH, Hua D. Preoperative serum lipid profile and outcome in nonmetastatic colorectal cancer. Chronic Dis Transl Med. 2016;2(4):241-249.DOI: 10.1016/j.cdtm.2016.11.015.
Xie C, Wen P, Su J, Li Q, Ren Y, Liu Y, et al. Elevated serum triglyceride and low-density lipoprotein cholesterol promotes the formation of colorectal polyps. BMC Gastroenterol. 2019;19(1):195,1-6.DOI: 10.1186/s12876-019-1115-9.
Kumar P, Kumar M, Gautam AK, Sonkar AB, Verma A, Singh A, et al. Ameliorative effect of fluvoxamine against colon carcinogenesis via COX-2 blockade with oxidative and metabolic stress reduction at the cellular, molecular and metabolic levels. BBA adv. 2022;2:100046,1-10.DOI: 10.1016/j.bbadva.2022.100046.
Nagarajan S, Namasivayam N. Silibinin alleviates hyperlipidaemia, restores mucin content, modulates TGF-β and fosters apoptosis in experimental rat colon carcinogenesis. J Funct Foods. 2014;11:472-481.DOI: 10.1016/j.jff.2014.10.025.
Mandal P. Potential biomarkers associated with oxidative stress for risk assessment of colorectal cancer. Naunyn Schmiedebergs Arch Pharmacol. 2017;390:557-565.DOI: 10.1007/s00210-017-1352-9.
Jisha N, Vysakh A, Vijeesh V, Anand P, Latha M. Methanolic Extract of Muntingia calabura L. mitigates 1, 2-dimethyl hydrazine induced colon carcinogenesis in wistar rats. Nutr Cancer. 2021;73(11-12):2363-2375.DOI: 10.1080/01635581.2020.1823438.
Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, et al. Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Cancers (Basel). 2020;12(7):1881,1-25.DOI: 10.3390/cancers12071881.
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress:current state. Nutr J. 2016;15(1):71, 1-22.DOI: 10.1186/s12937-016-0186-5.
Hussein S, Abdel-Aal S, Mady H. Chemo preventive effect of Curcumin on oxidative stress, antioxidant status, DNA fragmentation and CASPASE-9 gene expression 1,2-DMH-induced colon cancer in rats. Benha Vet Med J. 2013;25(2):125-138.DOI: 10.3923/ajbmb.2014.22.34.
Amerizadeh F, Rezaei N, Rahmani F, Hassanian SM, Moradi‐Marjaneh R, Fiuji H, et al. Crocin synergistically enhances the antiproliferative activity of 5‐flurouracil through Wnt/PI3K pathway in a mouse model of colitis‐associated colorectal cancer. J Cell Biochem. 2018;119(12):10250-10261.DOI: 10.1002/jcb.27367.
Vargas-Mendoza N, Madrigal-Santillán E, Morales-González Á, Esquivel-Soto J, Esquivel-Chirino C, y González-Rubio MG-L, et al. Hepatoprotective effect of silymarin. World J Hepatol. 2014;6(3):144-149.DOI: 10.4254/wjh.v6.i3.144.
Sangeetha N, Aranganathan S, Nalini N. Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1, 2 dimethylhydrazine induced rat colon cancer. Invest New Drugs. 2010;28(3):225-233.DOI: 10.1007/s10637-009-9237-5.
Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008;118(2):560-570.DOI: 10.1172/JCI32453.
Wu J, Cai Q, Li H, Cai H, Gao J, Yang G, et al. Circulating C-reactive protein and colorectal cancer risk: a report from the Shanghai men’s health study. Carcinogenesis. 2013;34(12):2799-2803.DOI: 10.1093/carcin/bgt288.
Jisha N, Vysakh A, Vijeesh V, Latha M. Anti-inflammatory efficacy of methanolic extract of Muntingia calabura L. leaves in Carrageenan induced paw edema model. Pathophysiology. 2019;26(3-4):323-330.DOI: 10.1016/j.pathophys.2019.08.002.
Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96(3) 795-803.PMID: 2914642.
Zhao X, Wang H, Yang Y, Gou Y, Wang Z, Yang D, et al. Protective effects of silymarin against D-Gal/LPS-induced organ damage and inflammation in mice. Drug Des Devel Ther. 2021;15:1903-1914.DOI: 10.2147/DDDT.S305033.
Ravichandran K, Velmurugan B, Gu M, Singh RP, Agarwal R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin Cancer Res. 2010;16(18):4595-4606.DOI: 10.1158/1078-0432.CCR-10-1213.
Wadhwa K, Pahwa R, Kumar M, Kumar S, Sharma PC, Singh G, et al. Mechanistic insights into the pharmacological significance of silymarin. Molecules. 2022;27(16):5327,1-50.DOI: 10.3390/molecules27165327.
Cheng L, Lai M-D. Aberrant crypt foci as microscopic precursors of colorectal cancer. World J Gastroenterol. 2003;9(12):2642-2649.DOI: 10.3748/wjg.v9.i12.2642.
M Elsadek BE, Abdel Aziz MA, M El-Deek SE, M Mahdy MM, Hussein MR. Combination therapy with quercetin and 5-fluorouracil ameliorates 1,2-dimethylhydrazine induced carcinogenesis in the colon of wistar rats. Bull Egypt Soc Physiol Sci. 2017;37(2):227-244.DOI: 10.21608/besps.2017.8276.
Yoo HG, Jung SN, Hwang YS, Park JS, Kim MH, Jeong M, et al. Involvement of NF-κB and caspases in silibinin-induced apoptosis of endothelial cells. Int J Mol Med. 2004;13(1):81-86.PMID: 14654975.
Kunac N, Filipović N, Kostić S, Vukojević K. The expression pattern of Bcl-2 and Bax in the tumor and stromal cells in colorectal carcinoma. Medicina. 2022;58(8):1135,1-11.DOI: 10.3390/medicina58081135.
Carvalho B, Sillars-Hardebol AH, Postma C, Mongera S, Droste JTS, Obulkasim A, et al. Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism. Cell Oncol. 2012;35(1):53-63.DOI: 10.1007/s13402-011-0065-1.
Wang C, Qiao X, Wang J, Yang J, Yang C, Qiao Y, et al. Amelioration of DMH-induced colon cancer by eupafolin through the reprogramming of apoptosis-associated p53/Bcl2/Bax signaling in rats. Eur J Inflamm. 2022;20(5):1-15.DOI: 10.1177/20587392211069771.
Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther. 2005;4(2):207-216.PMID: 15713892.
Kim SH, Choo GS, Yoo ES, Woo JS, Han SH, Lee JH, et al. Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells. Oncol Rep. 2019;42(5):1904-14.DOI: 10.3892/or.2019.7295.
Kauntz H, Bousserouel S, Gosse F, Marescaux J, Raul F. Silibinin, a natural flavonoid, modulates the early expression of chemoprevention biomarkers in a preclinical model of colon carcinogenesis. Int J Oncol. 2012;41(3): 849-854.DOI: 10.3892/ijo.2012.1526.
Al-Haideri M. Silymarin suppresses proliferation and PD-L1 expression in colorectal cancer cells and increases inflammatory CD8+ Cells in tumor-bearing mice. Clin Res Hepatol Gastroenterol. 2024:102425.DOI: 10.1016/j.clinre.2024.102425.
Ansil P, Jazaira V, Prabha S, Nitha A, Latha M. Amorphophallus campanulatus (roxb.) blume. tuber ameliorates hepatic oxidative stress during colon carcinogenesis induced by 1, 2 dimethylhydrazine. Int J Pharm Sci. 2013;5(1):366-371.
Ramadori G, Cameron S. Effects of systemic chemotherapy on the liver. Ann Hepatol. 2010;9(2):133-143.PMID: 20526005.
Mielczarek M, Chrzanowska A, Ścibior D, Skwarek A, Ashamiss F, Lewandowska K, et al. Arginase as a useful factor for the diagnosis of colorectal cancer liver metastases. Int J Biol Markers. 2006; 21(1):40-44.DOI: 10.1177/172460080602100106.
Goyal Y, Koul A, Ranawat P. Ellagic acid ameliorates cisplatin induced hepatotoxicity in colon carcinogenesis. Environ Toxicol. 2019; 34(7):804-813.DOI: 10.1002/tox.22747.
Rašković A, Stilinović N, Kolarović J, Vasović V, Vukmirović S, Mikov M. The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules. 2011; 16(10):8601-8613.DOI: 10.3390/molecules16108601.
Sasu A, Herman H, Folk A, Balta C, Rosu M, Miutescu E, et al. Protective effects of silymarin on epirubicin-induced hepatotoxicity in mice. Stud Univ VG Arad SSV. 2016;26(3):305-316.
Refbacks
- There are currently no refbacks.
