A novel hybrid approach to overcome defects of CE-SELEX and cell-SELEX in developing aptamers against aspartate β-hydroxylase

Hadi Bakhtiari , Hamed Naghoosi , Sina Sattari, Mahmoud Vahidi, Mehdi Shakouri Khomartash, Ali Faridfar, Mohsen Rajaeinejad, Mohsen Nikandish

Abstract


Background and purpose: Aptamers, a new category of molecular probes, are overthrowing antibodies in molecular diagnostics. However, there are serious problems with using aptamers for this application including poor or non-specific binding in vivo conditions. Systematic evolution of aptamers is achieved through various approaches including CE-SELEX and Cell-SELEX, each suffering its inevitable weaknesses. The shortcomings of negative selection and the lengthy procedure are Cell-SELEX's main problems, while                       CE-SELEX is deprived of native targets. Here, we introduced a kind of hybrid CE-Cell-SELEX, named CEC hybrid-SELEX, for addressing these limitations in creating aptamer probes detecting human                                 aspartate β-hydroxylase (ASPH), which is a well-established tumor biomarker, in cancer diagnostic investigations.

Experimental approach: In our approach, the selected oligomer pool from the last cycle of CE-SELEX was sequenced and then subjected to 3 additional rounds of Cell-SELEX which provides native ASPH                               (CEC hybrid-SELEX). High-throughput sequencing was applied to achieve a comprehensive sight of the enriched pools. Further confirmatory investigations on oligomers with higher copy numbers were performed using flow cytometry.

Findings/Results: Three selected oligomers, AP-CEC 1, AP-CEC 2, and AP-CEC 3, showing Kd values of 43.09 nM, 34.85 nM, and 35.92 nM, respectively, were achieved based on the affinity assessment of the ASPH-expressing cells.

Conclusion and implications: Our research suggested that CEC hybrid-SELEX could help recognize which oligomers from CE-SELEX are more capable of binding native ASPH in vivo.

 

 


Keywords


Aptamers; Aspartate β-hydroxylase; Capillary electrophoresis; High-throughput nucleotide sequencing; SELEX aptamer technique.

Full Text:

PDF

References


Sa P, Sahoo SK. Recent advances in aptamer-based nanomaterials in imaging and diagnostics of cancer. In: Aptamers Engineered Nanocarriers for Cancer Therapy, Kesharwani P, editor. Woodhead Publishing; 2023. pp. 347-366.DOI: 10.1016/B978-0-323-85881-6.00007-5.

Laraib U, Sargazi S, Rahdar A, Khatami M, Pandey S. Nanotechnology-based approaches for effective detection of tumor markers: a comprehensive state-of-the-art review. Int J Biol Macromol. 2022;195:356-383.DOI: 10.1016/j.ijbiomac.2021.12.052.

Gan X, Li S, Wang Y, Du H, Hu Y, Xing X, et al. Aspartate β-hydroxylase serves as a prognostic biomarker for neoadjuvant chemotherapy in gastric cancer. Int J Mol Sci. 2023;24(6):5482,1-13.DOI: 10.3390/ijms24065482.

Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, et al. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim. Acta A Mol Biomol Spectrosc. 2021;247:119038,1-46. DOI: 10.1016/j.saa.2020.119038.

Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem. 2022;69(5):1771-1792.DOI: 10.1002/bab.2244.

Wei X, Ma P, Mahmood KI, Zhang Y, Wang Z. A review: construction of aptamer screening methods based on improving the screening rate of key steps. Talanta. 2023;253:124003.DOI: 10.1016/j.talanta.2022.124003.

Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci. 2020;15(2):107-122.DOI: 10.4103/1735-5362.283811.

Prakash JS, Rajamanickam K. Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines. 2015;3(3):248-269.DOI: 10.3390/biomedicines3030248.

McKeague M, DeRosa MC. Challenges and opportunities for small molecule aptamer development. J Nucleic Acids. 2012;2012:748913,1-20.DOI: 10.1155/2012/748913.

Dong Y. Aptamers for analytical applications: affinity acquisition and method design. Wiley-VCH; 2019. pp. 215-232.DOI: 10.1002/9783527806799.

Duan Y, Zhang C, Wang Y, Chen G. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol Biol Rep. 2022;49(8):7979-7993.DOI: 10.1007/s11033-022-07317-0.

Zhu C, Yang G, Ghulam M, Li L, Qu F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol Adv. 2019;37(8):107432,1-16.DOI: 10.1016/j.biotechadv.2019.107432.

Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, et al. Advances in aptamer screening technologies. Talanta. 2019;200:124-144.DOI: 10.1016/j.talanta.2019.03.015.

Li L, Zhou J, Wang K, Chen X, Fu L, Wang Y. Screening and identification of specific aptamers for shellfish allergen tropomyosin with capillary electrophoresis-SELEX. Food Anal Methods. 2022;15(6):1535-1544.DOI: 10.1007/s12161-021-02211-0.

Dembowski SK, Bowser MT. Microfluidic methods for aptamer selection and characterization. Analyst. 2017;143(1):1-12.DOI: 10.1039/x0xx00000x.

Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W. Development of DNA aptamers using cell-SELEX. Nat Protoc. 2010;5(6):1169-1185.DOI: 10.1038/nprot.2010.66.

Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem. 2020;598:113620,1-18.DOI: 10.1016/j.ab.2020.113620.

Zhao J, He J, Zhong L, Huang Y, Zhao Y. Production of aptamers by cell-SELEX and their applications in cancer biomarker identification. Discov Med. 2020;29(158):159-167.DOI: 10.1007/s13261-022-02401.

Tan Y, Shi YS, Wu XD, Liang HY, Gao YB, Li SJ, et al. DNA aptamers that target human glioblastoma multiforme cells overexpressing epidermal growth factor receptor variant III in vitro. Acta Pharmacol Sin. 2013;34(12):1491-1498.DOI: 10.1038/aps.2013.137.

Ohuchi S. Cell-SELEX technology. Biores Open Access. 2012;1(6):265-272.DOI: 10.1089/biores.2012.0253.

Tan W, Fang X. Aptamers selected by cell-SELEX for theranostics: Springer; 2015. pp. 128-145.

Borgas DL, Gao JS, Tong M, de la Monte SM. Potential role of phosphorylation as a regulator of aspartyl-(asparaginyl)-β-hydroxylase: relevance to infiltrative spread of human hepatocellular carcinoma. Liver Cancer. 2015;4(3):139-153.DOI: 10.1159/000367731.

Jain KK. The handbook of biomarkers: Springer; 2010. pp. 189-226.

Kanwal M, Smahel M, Olsen M, Smahelova J, Tachezy R. Aspartate β-hydroxylase as a target for cancer therapy. J Exp Clin Cancer Res. 2020;39(1):163,1-12.DOI: 10.1186/s13046-020-01669-w.

Holtzman NG, Lebowitz MS, Koka R, Baer MR, Malhotra K, Shahlaee A, et al. Aspartate β-hydroxylase (ASPH) expression in acute myeloid leukemia: a potential novel therapeutic target. Front Oncol. 2021;11:5414,1-8.DOI: 10.3389/fonc.2021.783744.

Barboro P, Rubagotti A, Poddine S, Grillo F, Mastracci L, Boccardo F. The prognostic value of aspartate beta-hydroxylase in early breast cancer. Int J Biol Markers. 2022;37(3):328-335.DOI: 10.1177/03936155221108412.

Xian ZH, Zhang SH, Cong WM, Yan HX, Wang K, Wu MC. Expression of aspartyl beta-hydroxylase and its clinicopathological significance in hepatocellular carcinoma. Mod Pathol. 2006;19(2):280-286.DOI: 10.1038/modpathol.3800530.

Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, et al. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett. 2019;449:87-98.DOI: 10.1016/j.canlet.2019.02.006.

Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, et al. Hydroxylase activity of ASPH promotes hepatocellular carcinoma metastasis through epithelial-to-mesenchymal transition pathway. EBioMedicine. 2018;31:287-298.DOI: 10.1016/j.ebiom.2018.05.004.

Aihara A, Huang CK, Olsen MJ, Lin Q, Chung W, Tang Q, et al. A cell‐surface β‐hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology. 2014;60(4):1302-1313.DOI: 10.1002/hep.27275.

Ince N, de la Monte SM, Wands JR. Overexpression of human aspartyl (asparaginyl) β-hydroxylase is associated with malignant transformation. Cancer Res. 2000;60(5):1261-1266.PMID: 10728685.

Luu M, Sabo E, de la Monte SM, Greaves W, Wang J, Tavares R, et al. Prognostic value of aspartyl (asparaginyl)-β-hydroxylase/humbug expression in non–small cell lung carcinoma. Hum Pathol. 2009;40(5):639-644.DOI: 10.1016/j.humpath.2008.11.001.

Huyan T, Li Q, Dong DD, Yang H, Xue XP, Huang QS. Development of a novel anti-human aspartyl-(asparaginyl) β-hydroxylase monoclonal antibody with diagnostic and therapeutic potential. Oncol Lett. 2017. 13(3):1539-1546.DOI: 10.3892/ol.2017.5642.

Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B, et al. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: a brief update. Bosn J Basic Med Sci. 2018. 18(4): 297-304.DOI: 10.17305/bjbms.2018.3539.

Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Novel approach to overcome defects of cell-SELEX in developing aptamers against aspartate β-hydroxylase. ACS omega. 2021;6(16):11005-11014.DOI: 10.1021/acsomega.1c00876.

Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb cell fact. 2015;14(41):1-10.DOI 10.1186/s12934-015-0222-8.

Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. An innovative cell selection approach in developing human cells overexpressing aspartyl/asparaginyl β-hydroxylase. Res Pharm Sci. 2020;15(3): 291-299.DOI: 10.4103/1735-5362.288436.

Gheysarzadeh A, Sadeghifard N, Afraidooni L, Pooyan F, Mofid MR, Valadbeigi H, et al. Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J Res Med Sci. 2018;23:69,1-5.DOI: 10.4103/jrms.JRMS_879_17.

Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 2015;4(1):e223,1-7.DOI: 10.1038/mtna.2014.74.

Quang NN, Perret G, Ducongé F. Applications of high-throughput sequencing for in vitro selection and characterization of aptamers. Pharmaceuticals. 2016;9(4):76,1-16.

;9(4):76,1-16.DOI: 10.3390/ph9040076.

Yoshitomi T, Wayama F, Kimura K, Wakui K, Furusho H, Yoshimoto K. Screening of DNA signaling aptamer from multiple candidates obtained from SELEX with next-generation sequencing. Anal Sci. 2019;35(1):113-116.DOI: 10.2116/analsci.18SDN05.

Fülle L, Steiner N, Funke M, Gondorf F, Pfeiffer F, Siegl J, et al. RNA aptamers recognizing murine CCL17 inhibit T cell chemotaxis and reduce contact hypersensitivity in vivo. Mol Ther. 2018;26(1):95-104.DOI: 10.1016/j.ymthe.2017.10.005.

Lecocq S, Spinella K, Dubois B, Lista S, Hampel H, Penner G. Aptamers as biomarkers for neurological disorders. Proof of concept in transgenic mice. PloS one. 2018;13(1):e0190212,1-14.DOI: 10.1371/journal.pone.0190212.

Rose CM, Hayes MJ, Stettler GR, Hickey SF, Axelrod TM, Giustini NP, et al. Capillary electrophoretic development of aptamers for a glycosylated VEGF peptide fragment. Analyst. 2010;135(11):2945-2951.DOI: 10.1039/c0an00445f.

Martínez-Roque MA, Franco-Urquijo PA, García-Velásquez VM, Choukeife M, Mayer G, Molina-Ramírez SR, et al. DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection. Anal Biochem. 2022;645:114633,1-10.DOI: 10.1016/j.ab.2022.114633.

Uemachi H, Kasahara Y, Tanaka K, Okuda T, Yoneda Y, Obika S. Hybrid-type SELEX for the selection of artificial nucleic acid aptamers exhibiting cell internalization activity. Pharmaceutics. 2021;13(6):888,1-16.DOI: 10.3390/pharmaceutics13060888.

Khedri M, Abnous K, Rafatpanah H, Nabavinia MS, Taghdisi SM, Ramezani M. Development and evaluation of novel aptamers specific for human PD1 using hybrid systematic evolution of ligands by exponential enrichment approach. Immunol Invest. 2020;49(5):535-554.DOI: 10.1080/08820139.2020.1744639.

Ducrot C, Piffoux M. Combining independent protein and cellular SELEX with bioinformatic analysis may allow high affinity aptamer hit discovery. Mol Ther Nucleic Acids. 2023;33:254-256.DOI: 10.1016/j.omtn.2023.06.011.

Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem. 2001;276(52):48644-48654..DOI: 10.1074/jbc.M104651200.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.