Advancing high-throughput anti-HCV drug screening: a novel dual-reporter HCV replicon model with real-time monitoring

Kanokwan Chitsombat, Sarin Chimnaronk, Khanit Sa-ngiamsuntorn, Mullika Traidej Chomnawang, Krit Thirapanmethee

Abstract


Background and purpose: Hepatitis C virus (HCV) infection is a global health concern due to its substantial impact on morbidity and mortality. The burden of diseases related to HCV continues to escalate, particularly as infections progress to late-stage liver conditions, resulting in hepatocellular carcinoma on a global scale. Direct-acting antivirals effectively target HCV replication; however, their unreasonable costs and adverse effects emphasize the need for accessible and efficient therapeutic alternatives with minimal side effects. The primary aim of this study was to devise an HCV replicon system featuring a dual-reporter mechanism to facilitate high-throughput screening of potential novel antiviral agents.

Experimental approach: The full-length HCV genome (pJFH1) was used to construct an HCV replicon system. The glycoprotein regions (E1 and E2) were substituted with a red fluorescent reporter, mCherry, enabling visualization of protein synthesis within the replicon. In addition, an adjacent green fluorescent reporter, dBroccoli, was strategically introduced in proximity to the NS5B stop codon to serve as a reliable indicator of HCV replication activity by monitoring the fluorescence signals.

Findings/Results: The findings of this study unequivocally validated the effectiveness of the novel HCV replicon system for transfecting Huh-7 cells. Furthermore, the replicon system demonstrated a concentration-dependent response to anti-HCV pharmaceutical agents including telaprevir and sofosbuvir.

Conclusion and implications: These compelling results underscored the potential utility of the proposed HCV replicon system as an innovative model for the expeditious high-throughput screening of prospective anti-HCV agents within a short timeframe.

 

 


Keywords


Anti-HCV agents; Hepatitis C virus; High throughput screening; RNA aptamer.

Full Text:

PDF

References


World Health Organization: Hepatitis C. Available at: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c.

Holmes JA, Rutledge SM, Chung RT. Direct-acting antiviral treatment for hepatitis C. Lancet. 2019;393(10179):1392-1394.DOI: 10.1016/S0140-6736(18)32326-2.

Goel A, Bhadauria DS, Aggarwal R. Hepatitis C virus infection and chronic renal disease: a review. Indian J Gastroenterol. 2018;37(6):492-503.DOI: 10.1007/s12664-018-0920-3.

Hedskog C, Parhy B, Chang S, Zeuzem S, Moreno C, Shafran SD, et al. Identification of 19 novel hepatitis C virus subtypes-further expanding HCV classification. Open Forum Infect Dis. 2019;6(3):ofz076,1-9.DOI: 10.1093/ofid/ofz076.

Khan S, Soni S, Veerapu NS. HCV replicon systems: workhorses of drug discovery and resistance. Front Cell Infect Microbiol. 2020;10:325,1-16.DOI: 10.3389/fcimb.2020.00325.

Carter W, Connelly S, Struble K. Reinventing HCV treatment: past and future perspectives. J Clin Pharmacol. 2017;57(3):287-296.DOI: 10.1002/jcph.830.

Chan ST, Ou JHJ. Hepatitis C virus-induced autophagy and host innate immune response. Viruses. 2017;9(8):224,1-10.DOI: 10.3390/v9080224.

Kato T, Furusaka A, Miyamoto M, Date T, Yasui K, Hiramoto J, et al. Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J Med Virol. 2001;64(3):334-339.DOI: 10.1002/jmv.1055.

Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11(7):791-796.DOI: 10.1038/nm1268.

Catanese MT, Dorner M. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology. 2015;479-480:221-233.DOI: 10.1016/j.virol.2015.03.014.

Moriishi K, Matsuura Y. Evaluation systems for anti-HCV drugs. Adv Drug Deliv Rev. 2007;59(12):1213-1221.DOI: 10.1016/j.addr.2007.04.015.

Di Marco S, Volpari C, Tomei L, Altamura S, Harper S, Narjes F, et al. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J Biol Chem. 2005;280(33):29765-29770.DOI: 10.1074/jbc.M505423200.

Ma H, Leveque V, De Witte A, Li W, Hendricks T, Clausen SM, et al. Inhibition of native hepatitis C virus replicase by nucleotide and non-nucleoside inhibitors. Virology. 2005;332(1):8-15.DOI: 10.1016/j.virol.2004.11.024.

Pawlotsky JM. Virology of hepatitis B and C viruses and antiviral targets. J Hepatol. 2006;44(1 Suppl):S10-S13.DOI: 10.1016/j.jhep.2005.11.005.

Ramirez S, Mikkelsen LS, Gottwein JM, Bukh J. Robust HCV genotype 3a infectious cell culture system permits identification of escape variants with resistance to sofosbuvir. Gastroenterology. 2016;151(5):973-985.DOI: 10.1053/j.gastro.2016.07.013.

Serre SB, Jensen SB, Ghanem L, Humes DG, Ramirez S, Li YP, et al. Hepatitis C virus genotype 1 to 6 protease inhibitor escape variants: in vitro selection, fitness, and resistance patterns in the context of the infectious viral life cycle. Antimicrob. Agents Chemother. 2016;60(6):3563-3578.DOI: 10.1128/AAC.02929-15.

Jensen SB, Fahnøe U, Pham LV, Serre SBN, Tang Q, Ghanem L, et al. Evolutionary pathways to persistence of highly fit and resistant hepatitis C virus protease inhibitor escape variants. Hepatology. 2019;70(3):771-787.DOI: 10.1002/hep.30647.

Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci. 2017;12(2):88-98.DOI: 10.4103/1735-5362.202447.

Svensen N, Jaffrey SR. Fluorescent RNA aptamers as a tool to study RNA-modifying enzymes. Cell Chem Biol. 2016;23(3):415-425.DOI: 10.1016/j.chembiol.2015.11.018.

Gold L. RNA as the catalyst for drug screening. Nat Biotechnol. 2002;20(7):671-672.DOI: 10.1038/nbt0702-671.

Ouellet J. RNA fluorescence with light-up aptamers. Front Chem. 2016;4:29,1-12.DOI: 10.3389/fchem.2016.00029.

Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359-362.DOI: 10.1126/science.2523562.

Thongsri P, Sa-ngiamsuntorn K, Sithisarn P, Chomnawang MT, Thirapanmethee K. Cladogynos orientalis Zipp. extracts inhibit cell culture-derived hepatitis C virus genotype 2a replication in Huh-7 cells through NS5B inhibition. Asian Pac J Trop Biomed. 2019;9(12):346-352.DOI: 10.4103/2221-1691.262079.

Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G, et al. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol. 2002;76(8):4008-4021.DOI: 10.1128/JVI.76.8.4008-4021.2002.

Blight KJ, McKeating JA, Marcotrigiano J, Rice CM. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol. 2003;77(5):3181-3190.DOI: 10.1128/jvi.77.5.3181-3190.2003.

Hashemi A, Roohvand F, Ghahremani MH, Aghasadeghi MR, Vahabpour R, Motevali F, et al. Optimization of transfection methods for Huh-7 and Vero cells: a comparative study. Cytol Genet. 2012;46(6):347-353.DOI: 10.3103/S0095452712060035.

Krieger N, Lohmann V, Bartenschlager R. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol. 2001;75(10):4614-4624.DOI: 10.1128/JVI.75.10.4614-4624.2001.

Camus G, Xu S, Han B, Lu J, Dvory-Sobol H, Yu M, et al. Establishment of robust HCV genotype 4d, 5a, and 6a replicon systems. Virology. 2018;514:134-141.DOI: 10.1016/j.virololy.2017.11.003.

Murray EM, Grobler JA, Markel EJ, Pagnoni MF, Paonessa G, Simon AJ, et al. Persistent replication of hepatitis C virus replicons expressing the β-lactamase reporter in subpopulations of highly permissive Huh7 cells. J Virol. 2003;77(5):2928-2935.DOI: 10.1128/jvi.77.5.2928-2935.2003.

Moradpour D, Evans MJ, Gosert R, Yuan,Z, Blum HE, Goff SP, et al. Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol. 2004;78: 7400-7409.DOI: 10.1128/JVI.78.14.7400-7409.2004.

Appel N, Pietschmann T, Bartenschlager R. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol. 2005;79(5):3187-3194.DOI: 10.1128/JVI.79.5.3187-3194.2005.

Peng B, Yu M, Xu S, Lee YJ, Tian Y, Yang H, et al. Development of robust hepatitis C virus genotype 4 subgenomic replicons. Gastroenterology. 2013;144(1):59-61.DOI: 10.1053/j.gastro.2012.09.033.

Han B, Martin R, Xu S, Parvangada A, Svarovskaia ES, Mo H, et al. Sofosbuvir susceptibility of genotype 1 to 6 HCV from DAA-naïve subjects. Antiviral Res. 2019;170:104574,1-30.DOI: 10.1016/j.antiviral.2019.104574.

Elbadawy HM, Mohammed Abdul MI, Aljuhani N, Vitiello A, Ciccarese F, Shaker MA, et al. Generation of combinatorial lentiviral vectors expressing multiple anti-hepatitis c virus shRNAs and their validation on a novel HCV replicon double reporter cell line. Viruses. 2020;12(9):1044,1-22.DOI: 10.3390/v12091044.

Dustin LB, Bartolini B, Capobianchi MR, Pistello M. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect. 2016;22(10):826-832.DOI: 10.1016/j.cmi.2016.08.025.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.