Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review

Parvin Zarei , Peyman Adibi Sedeh, Ahmad Vaez, Ammar Hassanzadeh Keshteli

Abstract


Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.


Full Text:

PDF

References


Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev. 2022;21(3):103017,1-8.DOI: 10.1016/j.autrev.2021.103017.

Motavallian A, Minaiyan M, Rabbani M, Mahzouni P, Andalib S. Anti-inflammatory effects of alosetron mediated through 5-HT3 receptors on experimental colitis. Res Pharm Sci. 2019;14(3):228-36.DOI: 10.4103/1735-5362.258489.

Roda G, Chien Ng S, Kotze PG. Crohn’s disease. Nat Rev Dis Primers. 2020;6(1):22,1-19. DOI: 10.1038/s41572-020-0156-2.

Marabotto E, Kayali S, Buccilli S, Levo F, Bodini G, Giannini EG, et al. Colorectal cancer in inflammatory bowel diseases: epidemiology and prevention: a review. Cancers (Basel). 2022;14(17):4254,1-17.DOI: 10.3390/cancers14174254.

Yu R, Liu C, Zhang J, Li J, Tian S, Ding F, et al. Correlation analysis between disease activity and anxiety, depression, sleep disturbance, and quality of life in patients with inflammatory bowel disease. Nat Sci Sleep. 2023;15:407-421.DOI: 10.2147/NSS.S407388.

Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39-49.DOI: 10.1038/nrgastro.2017.136.

Haneishi Y, Furuya Y, Hasegawa M, Picarelli A, Rossi M, Miyamoto J. Inflammatory bowel diseases and gut microbiota. Int J Mol Sci. 2023;24(4):3817,1-13.DOI: 10.3390/ijms24043817.

Weng YJ, Gan HY, Li X, Huang Y, Li ZC, Deng HM, et al. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease. J Dig Dis. 2019;20(9): 447-459.DOI: 10.1111/1751-2980.12795.

Stroie T, Preda C, Istratescu D, Ciora C, Croitoru A, Diculescu M. Anxiety and depression in patients with inactive inflammatory bowel disease: the role of fatigue and health-related quality of life. Medicine (Baltimore). 2023;102(19):e33713,1-6.DOI: 10.1097/MD.0000000000033713.

Knyazev O, Babayan A, Kagramanova A, Lishchinskaya A, Zvyaglova M, Bodunova N, et al. P007 The frequency of anxiety and depression in patients with inflammatory bowel diseases in the Moscow clinical scientific center. J Am Gastroenterol. 2021;116(Suppl1):S2.DOI: 10.14309/01.ajg.0000798628.18430.be.

Byrne G, Rosenfeld G, Leung Y, Qian H, Raudzus J, Nunez C, et al. Prevalence of anxiety and depression in patients with inflammatory bowel disease. Can J Gastroenterol Hepatol. 2017;2017:1-6.DOI: 10.1155/2017/6496727.

Fairbrass KM, Guthrie EA, Black CJ, Selinger CP, Gracie DJ, Ford AC. Characteristics and effect of anxiety and depression trajectories in inflammatory bowel disease. J Am Gastroenterol. 2023;118(2):304-16.DOI: 10.14309/ajg.0000000000002063.

Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol. 2022;19(11):717-26.DOI: 10.1038/s41575-022-00634-6.

Koochakpoor G, Salari-Moghaddam A, Hassanzadeh Keshteli A, Afshar H, Esmaillzadeh A, Adibi P. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress. Nutr J. 2021;20(1):11,1-9.DOI: 10.1186/s12937-021-00670-z.

Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between gut microbiota and host immunity: impact on inflammation and immunotherapy. Biomedicines. 2023;11(2):294,1-41.DOI: 10.3390/biomedicines11020294.

Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, et al. The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr. 2018;57(Suppl 1):1-14.DOI: 10.1007/s00394-018-1703-4.

Chang L, Wei Y, Hashimoto K. Brain-gut-microbiota axis in depression: a historical overview and future directions. Brain Res Bull. 2022;182:44-56.DOI: 10.1016/j.brainresbull.2022.02.004.

Socała K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielińska A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 2021;172:105840,1-38.DOI: 10.1016/j.phrs.2021.105840.

Lee M, Chang EB. Inflammatory bowel diseases (IBD) and the microbiome searching the crime scene for clues. Gastroenterology. 2021;160(2):524-537.DOI: 10.1053/j.gastro.2020.09.056.

Andoh A, Nishida A. Alteration of the gut microbiome in inflammatory bowel disease. Digestion. 2023;104(1):16-23.DOI: 10.1159/000525925.

Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical metabolomics and applications in health, environmental and food science. Crit Rev Anal Chem. 2022;52(4):712-734.DOI: 10.1080/10408347.2020.1823811.

Alarcon-Barrera JC, Kostidis S, Ondo-Mendez A, Giera M. Recent advances in metabolomics analysis for early drug development. Drug Discov Today. 2022;27(6):1763-1773.DOI: 10.1016/j.drudis.2022.02.018.

Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The potential of metabolomics in biomedical applications. Metabolites. 2022;12(2):194,1-32.DOI: 10.3390/metabo12020194.

García-Alanís M, Quiroz-Casian L, Castañeda-González H, Arguelles-Castro P, Toapanta-Yanchapaxi L, Chiquete-Anaya E, et al. Prevalence of mental disorder and impact on quality of life in inflammatory bowel disease. Gastroenterol Hepatol. 2021;44(3):206-213.DOI: 10.1016/j.gastrohep.2020.06.025.

Irving P, Barrett K, Tang D, Nijher M, de Lusignan S. Common infections, mental health problems and healthcare use in people with inflammatory bowel disease: a cohort study protocol. Evid Based Ment Heal. 2021;24(2):82-87.DOI: 10.1136/ebmental-2020-300167.

Ngamratanapaiboon S, Pornchokchai K, Wongpitoonmanachai S, Pholkla P, Srikornvit N, Mo J, et al. Metabolomic identification of biochemical changes induced by fluoxetine in an insulinoma cell line (MIN6). Res Pharm Sci. 2023;18(5):517-527.DOI: 10.4103/1735-5362.383707.

Fousekis FS, Katsanos AH, Kourtis G, Saridi M, Albani E, Katsanos KH, et al. Inflammatory bowel disease and patients with mental disorders: what do we know? J Clin Med Res. 2021;13(9):466-473.DOI: 10.14740/jocmr4593.

Fracas E, Costantino A, Vecchi M, Buoli M. Depressive and anxiety disorders in patients with inflammatory bowel diseases: are there any gender differences? Int J Environ Res Public Health. 2023;20(13):6255,1-12.DOI: 10.3390/ijerph20136255.

Marrie RA, Graff LA, Fisk JD, Patten SB, Bernstein CN. The relationship between symptoms of depression and anxiety and disease activity in IBD over time. Inflamm Bowel Dis. 2021;27(8):1285-1293.DOI: 10.1093/ibd/izaa349.

Fairbrass KM, Lovatt J, Barberio B, Yuan Y, Gracie DJ, Ford AC. Bidirectional brain-gut axis effects influence mood and prognosis in IBD: a systematic review and meta-analysis. Gut. 2022;71(9):1773-1780.DOI: 10.1136/gutjnl-2021-325985.

Mules TC, Swaminathan A, Hirschfeld E, Borichevsky G, Frampton C, Day AS, et al. The impact of disease activity on psychological symptoms and quality of life in patients with inflammatory bowel disease-results from the stress, anxiety and depression with disease activity (SADD) study. Aliment Pharmacol Ther. 2022;55(2):201-211.DOI: 10.1111/apt.16616.

Guo L, Rohde J, Farraye FA. Stigma and disclosure in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2020;26(7):1010-1016.DOI: 10.1093/ibd/izz260.

Yuan X, Chen B, Duan Z, Xia Z, Ding Y, Chen T, et al. Depression and anxiety in patients with active ulcerative colitis: crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes. 2021;13(1):1987779,1-18.DOI: 10.1080/19490976.2021.1987779.

Hu S, Chen Y, Chen Y, Wang C. Depression and anxiety disorders in patients with inflammatory bowel disease. Front Psychiatry. 2021;12:714057,1-8.DOI: 10.3389/fpsyt.2021.714057.

Aderemi AV, Ayeleso AO, Oyedapo OO, Mukwevho E. Metabolomics: a scoping review of its role as a tool for disease biomarker discovery in selected non-communicable diseases. Metabolites. 2021;11(7):418,1-15.DOI: 10.3390/metabo11070418.

Zhang Y, Si X, Yang L, Wang H, Sun Y, Liu N. Association between intestinal microbiota and inflammatory bowel disease. Anim Model Exp Med. 2022;5(4):311-322.DOI: 10.1002/ame2.12255.

Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020;113(12):2019-2040.DOI: 10.1007/s10482-020-01474-7.

de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020-1032.DOI: 10.1136/gutjnl-2021-326789.

Liu S, Zhao W, Lan P, Mou X. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell. 2021;12(5):331-345.DOI: 10.1007/s13238-020-00745-3.

Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018;9:2247,1-13.DOI: 10.3389/fmicb.2018.02247.

Cahana I, Iraqi FA. Impact of host genetics on gut microbiome: take‐home lessons from human and mouse studies. Anim Model Exp Med. 2020;3(3):229-236.DOI: 10.1002/ame2.12134.

Chang JT. Pathophysiology of inflammatory bowel diseases. N Engl J Med. 2020;383(27):2652-2664.DOI: 10.1056/NEJMra2002697.

Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1-10.DOI: 10.1007/s12328-017-0813-5.

Amoroso C, Perillo F, Strati F, Fantini M, Caprioli F, Facciotti F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells. 2020;9(5):1234,1-24.DOI: 10.3390/cells9051234.

Shan Y, Lee M, Chang EB. The gut microbiome and inflammatory bowel diseases. Annu Rev Med. 2022;73:455-468.DOI: 10.1146/annurev-med-042320-021020.

Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655-662.DOI: 10.1038/s41586-019-1237-9.

Schoch SF, Castro-Mejía JL, Krych L, Leng B, Kot W, Kohler M, et al. From alpha diversity to Zzz: interactions among sleep, the brain, and gut microbiota in the first year of life. Prog Neurobiol. 2022;209:102208,1-11.DOI: 10.1016/j.pneurobio.2021.102208.

Humbel F, Rieder JH, Franc Y, Juillerat P, Scharl M, Misselwitz B, et al. Association of alterations in intestinal microbiota with impaired psychological function in patients with inflammatory bowel diseases in remission. Clin Gastroenterol Hepatol. 2020;18(9):2019-2029.DOI: 10.1016/j.cgh.2019.09.022.

Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. Microbiome. 2021;9(1):60,1-18.DOI: 10.1186/s40168-021-01024-x.

Doron I, Kusakabe T, Iliev ID. Immunoglobulins at the interface of the gut mycobiota and anti-fungal immunity. Semin Immunol. 2023;67:101757,1-29.DOI: 10.1016/j.smim.2023.101757.

Miyoshi J, Lee STM, Kennedy M, Puertolas M, Frith M, Koval JC, et al. Metagenomic alterations in gut microbiota precede and predict onset of colitis in the IL10 gene-deficient murine model. Cell Mol Gastroenterol Hepatol. 2021;11(2):491-502.DOI: 10.1016/j.jcmgh.2020.08.008.

Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology. 2021;160(4):1050-1066.DOI: 10.1053/j.gastro.2020.06.100.

Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest. 2022;132(5):1-9.DOI: 10.1172/JCI155786.

Imai T, Inoue R, Kawada Y, Morita Y, Inatomi O, Nishida A, et al. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2019;54(2):149-159.DOI: 10.1007/s00535-018-1530-7.

Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci. 2022;23(7):3464,1-25.DOI: 10.3390/ijms23073464.

Gubatan J, Boye TL, Temby M, Sojwal RS, Holman DR, Sinha SR, et al. Gut microbiome in inflammatory bowel disease: role in pathogenesis, dietary modulation, and colitis-associated colon cancer. Microorganisms. 2022;10(7):1371,1-14.DOI: 10.3390/microorganisms10071371.

Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502,1-31.DOI: 10.7717/peerj.7502.

Sultan S, El-Mowafy M, Elgaml A, Mottawea W. Metabolic influences of gut microbiota dysbiosis on inflammatory bowel disease. Front Physiol. 2021;12:715506,1-27.DOI: 10.3389/fphys.2021.715506.

Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol. 2022;12:733992,1-14.DOI: 10.3389/fcimb.2022.733992.

Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28(30):4053-4060.DOI: 10.3748/wjg.v28.i30.4053.

Bernstein CN, Forbes JD. Gut microbiome in inflammatory bowel disease and other chronic immune-mediated inflammatory diseases. Inflamm Intest Dis. 2017;2(2):116-23.DOI: 10.1159/000481401.

Hassanzadeh Keshteli A, Valcheva R, Nickurak C, Park H, Mandal R, van Diepen K, et al. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission. Nutrients. 2022;14(16):3294,1-18.DOI: 10.3390/nu14163294.

Torres J, Hu J, Seki A, Eisele C, Nair N, Huang R, et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut. 2020;69(1):42-51.DOI: 10.1136/gutjnl-2018-317855.

Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:1-16.DOI: 10.1155/2019/7247238.

Huang L, Gao L, Chen C. Role of medium-chain fatty acids in healthy metabolism: a clinical perspective. Trends Endocrinol Metab. 2021;32(6):351-366.DOI: 10.1016/j.tem.2021.03.002.

Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. J Crohn’s Colitis. 2021;15(6):1068-1079.DOI: 10.1093/ecco-jcc/jjaa254.

Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of inflammatory bowel disease: innate immune system. Int J Mol Sci. 2023;24(2):1526,1-25.DOI: 10.3390/ijms24021526.

Altajar S, Moss A. Inflammatory bowel disease environmental risk factors: diet and gut microbiota. Curr Gastroenterol Rep. 2020;22(12):1-7.DOI: 10.1007/s11894-020-00794-y.

Massironi S, Viganò C, Palermo A, Pirola L, Mulinacci G, Allocca M, et al. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2023;8(6):579-590.DOI: 10.1016/S2468-1253(23)00011-0.

Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, et al. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne). 2023;14:1217165,1-24.DOI: 10.3389/fendo.2023.1217165.

Wang J, Sun Q, Gao Y, Xiang H, Zhang C, Ding P, et al. Metabolomics window into the diagnosis and treatment of inflammatory bowel disease in recent 5 years. Int Immunopharmacol. 2022;113(Pt B):109472.DOI: 10.1016/j.intimp.2022.109472.

Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in exercise and sports: a systematic review. Sport Med. 2022;52(3)547-583.DOI: 10.1007/s40279-021-01582-y.

Chen L, Zhernakova D V, Kurilshikov A, Andreu-Sánchez S, Wang D, Augustijn HE, et al. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med. 2022;28(11):2333-2343.DOI: 10.1038/s41591-022-02014-8.

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55-71.DOI: 10.1038/s41579-020-0433-9.

Schügerl K. Extraction of primary and secondary metabolites. Adv Biochem Eng Biotechnol. 2005;92:1-48.DOI: 10.1007/b98920.

LeVatte M,Hassanzadeh Keshteli A, Zarei P, Wishart DS. Applications of metabolomics to precision nutrition. Lifestyle Genom. 2022;15(1):1-9.DOI: 10.1159/000518489.

Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Metabolomics as a promising resource identifying potential biomarkers for inflammatory bowel disease. J Clin Med. 2021;10(4):622,1-25.DOI: 10.3390/jcm10040622.

McCarville JL, Chen GY, Cuevas VD, Troha K, Ayres JS. Microbiota metabolites in health and disease. Annu Rev Immunol. 2020;38:147-170.DOI: 10.1146/annurev-immunol-071219-125715.

Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, et al. Serum biomarkers for inflammatory bowel disease. Front Med. 2020;7:123,1-17.DOI: 10.3389/fmed.2020.00123.

Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine. 2023;90:1-13.DOI: 10.1016/j.ebiom.2023.104527.

Yan M, Xu G. Current and future perspectives of functional metabolomics in disease studies-a review. Analytica Chimica Acta. 2018;1037:41-54.DOI: 10.1016/j.aca.2018.04.006.

Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. Magn Reson Chem. 2023;61(12):628-653.DOI: 10.1002/mrc.5350.

Mak J, Peng G, Le A, Gandotra N, Enns GM, Scharfe C, et al. Validation of a targeted metabolomics panel for improved second‐tier newborn screening. J Inherit Metab Dis. 2023;46(2):194-205.DOI: 10.1002/jimd.12591.

Fu J, Zhu F, Xu C, Li Y. Metabolomics meets systems immunology. EMBO Rep. 2023;24(4):e55747,1-18.DOI: 10.15252/embr.202255747.

Nagana Gowda GA, Raftery D. NMR metabolomics methods for investigating disease. Anal Chem. 2023;95(1):83-99.DOI: 10.1021/acs.analchem.2c04606.

Jia Y, Hui L, Sun L, Guo D, Shi M, Zhang K, et al. Association between human blood metabolome and the risk of psychiatric disorders. Schizophr Bull. 2023;49(2):428-443.DOI: 10.1093/schbul/sbac130.

de Kluiver H, Jansen R, Penninx BWJH, Giltay EJ, Schoevers RA, Milaneschi Y. Metabolomics signatures of depression: the role of symptom profiles. Transl Psychiatry. 2023;13(1):198,1-10.DOI: 10.1038/s41398-023-02484-5.

Humer E, Pieh C, Probst T. Metabolomic biomarkers in anxiety disorders. Int J Mol Sci. 2020;21(13):4784,1-19.

DOI: 10.3390/ijms21134784.

Dong MX, Hu L, Wei YD, Chen GH. Metabolomics profiling reveals altered lipid metabolism and identifies a panel of lipid metabolites as biomarkers for Parkinson’s disease related anxiety disorder. Neurosci Lett. 2021;745:135626. DOI: 1016/j.neulet.2021.135626.

Liu X, Liu H, Wei F, Zhao D, Wang Y, Lv M, et al. Fecal metabolomics and network pharmacology reveal the correlations between constipation and depression. J Proteome Res. 2021;20(10):4771-4786.DOI: 10.1021/acs.jproteome.1c00435.

Palermo A. Metabolomics-and systems-biology-guided discovery of metabolite lead compounds and druggable targets. Drug Discov Today. 2023;28(2):103460,1-10.DOI: 10.1016/j.drudis.2022.103460.

Liu XY, Tang H, Zhou QY, Zeng YL, Chen D, Xu H, et al. Advancing the precision management of inflammatory bowel disease in the era of omics approaches and new technology. World J Gastroenterol. 2023;29(2):272-285.DOI: 10.3748/wjg.v29.i2.272.

Humer E, Probst T, Pieh C. Metabolomics in psychiatric disorders: What we learn from animal models. Metabolites. 2020;10(2):72,1-20.DOI: 10.3390/metabo10020072.

Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427-434.DOI: 10.1038/nature06005.

Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293-305.DOI: 10.1038/s41564-018-0306-4.

Li S, Hua D, Wang Q, Yang L, Wang X, Luo A, et al. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress. Int J Neuropsychopharmacol. 2020;23(1):26-41.DOI: 10.1093/ijnp/pyz061.

Averina O V, Zorkina YA, Yunes RA, Kovtun AS, Ushakova VM, Morozova AY, et al. Bacterial metabolites of human gut microbiota correlating with depression. Int J Mol Sci. 2020;21(23):9234,1-40.DOI: 10.3390/ijms21239234.

Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry. 2022;12(1):164,1-13.DOI: 10.1038/s41398-022-01922-0.

Swann OG, Kilpatrick M, Breslin M, Oddy WH. Dietary fiber and its associations with depression and inflammation. Nutr Rev. 2020;78(5):394-411.DOI: 10.1093/nutrit/nuz072.

Majumdar A, Siva Venkatesh IP, Basu A. Short-chain fatty acids in the microbiota-gut-brain axis: role in neurodegenerative disorders and viral infections. ACS Chem Neurosci. 2023;14(6):1045-1062.DOI: 10.1021/acschemneuro.2c00803.

Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother. 2021;139:111661,1-23.DOI: 10.1016/j.biopha.2021.111661.

Yadav S, Dwivedi A, Tripathi A, Tripathi AK. Therapeutic potential of short chain fatty acid production by gut microbiota in neurodegenerative disorders. Nutr Res. 2022;106:72-84.DOI: 10.1016/j.nutres.2022.07.007.

Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev. 2023;152:105296,1-16.DOI: 10.1016/j.neubiorev.2023.105296.

Baizabal-Carvallo JF, Alonso-Juarez M. The link between gut dysbiosis and neuroinflammation in Parkinson’s disease. Neuroscience. 2020;432:160-173.DOI: 10.1016/j.neuroscience.2020.02.030.

Hao C, Gao Z, Liu X, Rong Z, Jia J, Kang K, et al. Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Sci Rep. 2020;10(1):19917,1-10.DOI: 10.1038/s41598-020-77085-z.

Feng L, Zhou N, Li Z, Fu D, Guo Y, Gao X, et al. Co-occurrence of gut microbiota dysbiosis and bile acid metabolism alteration is associated with psychological disorders in Crohn’s disease. FASEB J. 2022;36(1):e22100,1-14.DOI: 10.1096/fj.202101088RRR.

Torres J, Palmela C, Brito H, Bao X, Ruiqi H, Moura-Santos P, et al. The gut microbiota, bile acids and their correlation in primary sclerosing cholangitis associated with inflammatory bowel disease. United Eur Gastroenterol J. 2018;6(1):112-122.DOI: 10.1177/2050640617708953.

Quinn M, McMillin M, Galindo C, Frampton G, Pae HY, DeMorrow S. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis. 2014;46(6):527-534.DOI: 10.1016/j.dld.2014.01.159.

Lirong W, Mingliang Z, Mengci L, Qihao G, Zhenxing R, Xiaojiao Z, et al. The clinical and mechanistic roles of bile acids in depression, Alzheimer’s disease, and stroke. Proteomics. 2022;22(15-16):2100324.DOI: 10.1002/pmic.202100324.

Spedding S. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients. 2014;6(4):1501-1518.DOI: 10.3390/nu6041501.

MahmoudianDehkordi S, Bhattacharyya S, Brydges CR, Fiehn O, Dunlop BW, Kaddurah-Daouk R. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety-A role for bile acids. Front Neurosci. 2022;16:937906,1-15.DOI: 10.3389/fnins.2022.937906.

Lu XU, Yang R, Zhang J, Wang P, Gong Y, Hu W, et al. Tauroursodeoxycholic acid produces antidepressant‐like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido‐nitrosative stress, and endoplasmic reticulum stress. Fundam Clin Pharmacol. 2018;32(4):363-377.DOI: 10.1111/fcp.12367.

Hashimoto K. Gut-microbiota-brain axis by bile acids in depression. Psychiatry Clin Neurosci. 2022;76(7):281-281.DOI: 10.1111/pcn.13370.

Grant SM, DeMorrow S. Bile acid signaling in neurodegenerative and neurological disorders. Int J Mol Sci. 2020;21(17):5982,1-25.DOI: 10.3390/ijms21175982.

Yao H, Zhang D, Yu H, Shen H, Liu H, Meng F, et al. The microbiota-gut-brain axis in pathogenesis of depression: a narrative review. Physiol Behav. 2023;260:114056.DOI: 10.1016/j.physbeh.2022.114056.

Severyanova LA, Lazarenko VA, Plotnikov DV, Dolgintsev ME, Kriukov AA. L-lysine as the molecule influencing selective brain activity in pain-induced behavior of rats. Int J Mol Sci. 2019;20(8):1899,1-9.DOI: 10.3390/ijms20081899.

Rahmani M, Rahmani F, Rezaei N. The brain-derived neurotrophic factor: missing link between sleep deprivation, insomnia, and depression. Neurochem Res. 2020;45(2):221-231.DOI: 10.1007/s11064-019-02914-1.

Lin CC, Huang TL. Brain-derived neurotrophic factor and mental disorders. Biomed J. 2020;43(2):134-142.DOI: 10.1016/j.bj.2020.01.001.

Dou SH, Cui Y, Huang SM, Zhang B. The role of brain-derived neurotrophic factor signaling in central nervous system disease pathogenesis. Front Hum Neurosci. 2022;16:924155,1-8. DOI: 10.3389/fnhum.2022.924155.

Sochal M, Ditmer M, Binienda A, Gabryelska A, Białasiewicz P, Talar-Wojnarowska R, et al. Relation between selected sleep parameters, depression, anti-tumor necrosis factor therapy, and the brain-derived neurotrophic factor pathway in inflammatory bowel disease. Metabolites. 2023;13(3):450,1-18.DOI: 10.3390/metabo13030450.

Gejl AK, Enevold C, Bugge A, Andersen MS, Nielsen CH, Andersen LB. Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci Rep. 2019;9(1):9655,1-9.DOI: 10.1038/s41598-019-45976-5.

Chen LM, Bao CH, Wu Y, Liang SH, Wang D, Wu LY, et al. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation. 2021;18(1):1-13.DOI: 10.1186/s12974-021-02175-2.

Alexeev EE, Lanis JM, Kao DJ, Campbell EL, Kelly CJ, Battista KD, et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol. 2018;188(5):1183-1194.DOI: 10.1016/j.ajpath.2018.01.011.

Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25-37.DOI: 10.1016/j.chom.2017.06.007.

Waclawiková B, El Aidy S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals. 2018;11(3):63,1-17.DOI: 10.3390/ph11030063.

Seo SK, Kwon B. Immune regulation through tryptophan metabolism. Exp Mol Med. 2023;55(7):1371-1379.DOI: 10.1038/s12276-023-01028-7.

Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598-605.DOI: 10.1038/nm.4102.

Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Comput Struct Biotechnol J. 2023;21:4777-4789.DOI: 10.1016/j.csbj.2023.09.032.

Lai Y, Xue J, Liu CW, Gao B, Chi L, Tu P, et al. Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn’s disease. Molecules. 2019;24(3):449,1-15.DOI: 10.3390/molecules24030449.

Gasaly N, De Vos P, Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol. 2021;12:658354,1-16.DOI: 10.3389/fimmu.2021.658354.

Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y. Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J Immunol. 2018;201(12):3683-3693.DOI: 10.4049/jimmunol.1701734.

Kabel AM, Omar MS, Alotaibi SN, Baali MH. Effect of indole-3-carbinol and/or metformin on female patients with ulcerative colitis (premalignant condition): role of oxidative stress, apoptosis and proinflammatory cytokines. J Cancer Res Treat. 2017;5(1):1-8.DOI: 10.12691/jcrt-5-1-1.

Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol. 2022;41(3):326-345.DOI: 10.1080/08830185.2021.1954638.

Proietti E, Pauwels RWM, de Vries AC, Orecchini E, Volpi C, Orabona C, et al. Modulation of indoleamine 2, 3-dioxygenase 1 during inflammatory bowel disease activity in humans and mice. Int J Tryptophan Res. 2023;16:1-11.DOI: 10.1177/11786469231153109.

Liu X, Zhou W, Zhang X, Ding Y, Du Q, Hu R. 1‐L‐MT, an IDO inhibitor, prevented colitis‐associated cancer by inducing CDC20 inhibition‐mediated mitotic death of colon cancer cells. Int J Cancer. 2018;143(6):1516-1529.DOI: 10.1002/ijc.31417.

Sales PMG, Schrage E, Coico R, Pato M. Linking nervous and immune systems in psychiatric illness: a meta-analysis of the kynurenine pathway. Brain Res. 2023;1800:148190. DOI: 10.1016/j.brainres.2022.148190.

Jovanovic F, Candido KD, Knezevic NN. The role of the kynurenine signaling pathway in different chronic pain conditions and potential use of therapeutic agents. Int J Mol Sci. 2020;21(17):6045,1-17.DOI: 10.3390/ijms21176045.

Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate receptor dysregulation and platelet glutamate dynamics in Alzheimer’s and Parkinson’s Diseases: insights into current medications. Biomolecules. 2023;13(11):1609,1-26.DOI: 10.3390/biom13111609.

Kanova M, Kohout P. Serotonin-its synthesis and roles in the healthy and the critically ill. Int J Mol Sci. 2021;22(9):4837,1-12.DOI: 10.3390/ijms22094837.

Mikocka-Walus A, Ford AC, Drossman DA. Antidepressants in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(3):184-192.DOI: 10.1038/s41575-019-0259-y.

Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr. 2024;64(21):7291-7310.DOI: 10.1080/10408398.2023.2183935.

Salaga M, Binienda A, Piscitelli F, Mokrowiecka A, Cygankiewicz AI, Verde R, et al. Systemic administration of serotonin exacerbates abdominal pain and colitis via interaction with the endocannabinoid system. Biochem Pharmacol. 2019;161:37-51.DOI: 10.1016/j.bcp.2019.01.001.

Wu H, Wang J, Teng T, Yin B, He Y, Jiang Y, et al. Biomarkers of intestinal permeability and blood-brain barrier permeability in adolescents with major depressive disorder. J Affect Disord. 2023;323:659-666.DOI: 10.1016/j.jad.2022.11.058.

Iordache MM, Tocia C, Aschie M, Dumitru A, Manea M, Cozaru GC, et al. Intestinal permeability and depression in patients with inflammatory bowel disease. J Clin Med. 2022;11(17):5121,1-10.DOI: 10.3390/jcm11175121.

Ge L, Liu S, Li s, Yang J, Hu G, Hu C, et al. Psychological stress in inflammatory bowel disease: psychoneuroimmunological insights into bidirectional gut-brain communications. Front Immunol. 2022;13:1016578,1-20.DOI: 10.3389/fimmu.2022.1016578.

Kazemi A, Noorbala AA, Azam K, Djafarian K. Effect of prebiotic and probiotic supplementation on circulating pro-inflammatory cytokines and urinary cortisol levels in patients with major depressive disorder: a double-blind, placebo-controlled randomized clinical trial. J Funct Foods. 2019;52:596-602.DOI: 10.1016/j.jff.2018.11.041.

Zhan Y, Zhou Y, Zheng W, Liu W, Wang C, Lan X, et al. Alterations of multiple peripheral inflammatory cytokine levels after repeated ketamine infusions in major depressive disorder. Transl Psychiatry. 2020;10(1):246,1-9.DOI: 10.1038/s41398-020-00933-z.

Sukocheva OA, Lukina E, McGowan E, Bishayee A. Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. Adv Protein Chem Struct Biol. 2020;120:123-158.DOI: 10.1016/bs.apcsb.2019.11.003.

Albeituni S, Stiban J. Roles of ceramides and other sphingolipids in immune cell function and inflammation. Adv Exp Med Biol. 2019;1161:169-191.DOI: 10.1007/978-3-030-21735-8_15.

Johnson EL, Heaver SL, Waters JL, Kim BI, Bretin A, Goodman AL, et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun. 2020;11(1):2471,1-11.DOI: 10.1038/s41467-020-16274-w.

Yao H, Yu PC, Jiang CM. Metabolomics-driven identification of perturbations in amino acid and sphingolipid metabolism as therapeutic targets in a rat model of anorexia nervosa disease using chemometric analysis and a multivariate analysis platform. RSC Adv. 2020;10(9):4928-4941.DOI: 10.1039/C9RA05187B.

Matanes F, Twal WO, Hammad SM. Sphingolipids as biomarkers of disease. Adv Exp Med Bio. 2019;1159;109-138.DOI: 10.1007/978-3-030-21162-2_7.

Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as mediators of oxidative stress and inflammation in cardiometabolic disease. Int J Mol Sci. 2022;23(5):2719,1-17.DOI: 10.3390/ijms23052719.

Konjevod M, Perkovic MN, Saiz J, Strac DS, Barbas C, Rojo D. Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. J Pharm Biomed Anal. 2021;194:113681,1-21.DOI: 10.1016/j.jpba.2020.113681.

Banfi D, Moro E, Bosi A, Bistoletti M, Cerantola S, Crema F, et al. Impact of microbial metabolites on microbiota-gut-brain axis in inflammatory bowel disease. Int J Mol Sci. 2021;22(4):1623,1-42. DOI: 10.3390/ijms22041623.

Li XJ, You XY, Wang CV, Li XL, Sheng YY, Zhuang PW, et al. Bidirectional brain‐gut‐microbiota axis in increased intestinal permeability induced by central nervous system injury. CNS Neurosci Ther. 2020;26(8):783-790.DOI: 10.1111/cns.13401.

Peppas S, Pansieri C, Piovani D, Danese S, Peyrin-Biroulet L, Tsantes AG, et al. The brain-gut axis: psychological functioning and inflammatory bowel diseases. J Clin Med. 2021;10(3):377,1-21.DOI: 10.3390/jcm10030377.

Molina-Torres G, Rodriguez-Arrastia M, Roman P, Sanchez-Labraca N, Cardona D. Stress and the gut microbiota-brain axis. Behav Pharmacol. 2019;30(2-3):187-200.DOI: 10.1097/FBP.0000000000000478.

Labanski A, Langhorst J, Engler H, Elsenbruch S. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: a transdisciplinary challenge. Psychoneuroendocrinology. 2020;111:104501,1-31.DOI: 10.1016/j.psyneuen.2019.104501.

Lasconi C, Pahl MC, Cousminer DL, Doege CA, Chesi A, Hodge KM, et al. Variant-to-gene-mapping analyses reveal a role for the hypothalamus in genetic susceptibility to inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2021;11(3):667-682.DOI: 10.1016/j.jcmgh.2020.10.004.

Kong G, Ellul S, Narayana VK, Kanojia K, Ha HTT, Li S, et al. An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington’s disease. Neurobiol Dis. 2021;148:105199,1-14. DOI: 10.1016/j.nbd.2020.105199.

Shahali A, Soltani R, Akbari V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. Res Pharm Sci. 2023;18(5):468-477.DOI: 10.4103/1735-5362.383703.

O’Connell TM. The application of metabolomics to probiotic and prebiotic interventions in human clinical studies. Metabolites. 2020;10(3):120,1-14.DOI: 10.3390/metabo10030120.

Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, et al. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem. 2022;367(11):130697.DOI: 10.1016/j.foodchem.2021.130697.

Tilocca B, Pieroni L, Soggiu A, Britti D, Bonizzi L, Roncada P, et al. Gut-brain axis and neurodegeneration: state-of-the-art of meta-omics sciences for microbiota characterization. Int J Mol Sci. 2020;21(11):4045,1-20.DOI: 10.3390/ijms21114045.

Castelli FA, Rosati G, Moguet C, Fuentes C, Marrugo-Ramírez J, Lefebvre T, et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal Bioanal Chem. 2022;414(2):759-789.DOI: 10.1007/s00216-021-03586-z.

Kumar M, Garand M, Al Khodor S. Integrating omics for a better understanding of inflammatory bowel disease: a step towards personalized medicine. J Transl Med. 2019;17(1):419,1-13.DOI: 10.1186/s12967-019-02174-1.

Odom JD, Sutton VR. Metabolomics in clinical practice: improving diagnosis and informing management. Clin Chem. 2021;67(12):1606-1617.DOI: 10.1093/clinchem/hvab184.

Di Minno A, Gelzo M, Caterino M, Costanzo M, Ruoppolo M, Castaldo G. Challenges in metabolomics-based tests, biomarkers revealed by metabolomic analysis, and the promise of the application of metabolomics in precision medicine. Int J Mol Sci. 2022;23(9):5213,1-16.DOI: 10.3390/ijms23095213.

Long NP, Nghi TD, Kang YP, Anh NH, Kim HM, Park SK, et al. Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine. Metabolites. 2020;10(2):51,1-28.DOI: 10.3390/metabo10020051.

Beger RD, Schmidt MA, Kaddurah-Daouk R. Current concepts in pharmacometabolomics, Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites. 2020;10(4):129,1-19.DOI: 10.3390/metabo10040129.

Tillisch K, Mayer EA, Gupta A, Gill Z, Brazeilles R, Le Nevé B, et al. Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women. Psychosom Med. 2017;79(8):905-913.DOI: 10.1097/PSY.0000000000000493.

Dethloff F, Vargas F, Elijah E, Park DI, Herzog DP, Gentry EC, et al. Paroxetine administration affects microbiota and bile acid levels in mice. Front Psychiatry. 2020;11:506923,1-9.DOI: 10.3389/fpsyt.2020.00518.

Yu M, Jia H, Zhou C, Yang Y, Zhao Y, Yang M, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal. 2017;138:231-239.DOI: 10.1016/j.jpba.2017.02.008.

Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-237.DOI: 10.1038/s41575-019-0258-z.

Rodrigues RO, Sousa PC, Gaspar J, Bañobre‐López M, Lima R, Minas G. Organ‐on‐a‐chip: a preclinical microfluidic platform for the progress of nanomedicine. Small. 2020;16(51):2003517,1-19.DOI: 10.1002/smll.202003517.

Anwardeen NR, Diboun I, Mokrab Y, Althani AA, Elrayess MA. Statistical methods and resources for biomarker discovery using metabolomics. BMC bioinformatics. 2023;24(1):250,1-18.DOI: 10.1186/s12859-023-05383-0.

Caesar LK, Kellogg JJ, Kvalheim OM, Cech NB. Opportunities and limitations for untargeted mass spectrometry metabolomics to identify biologically active constituents in complex natural product mixtures. J Nat Prod. 2019;82(3):469-484.DOI: 10.1021/acs.jnatprod.9b00176.

Keith KA, Jensen D, O’Connor B. Text and causal inference: a review of using text to remove confounding from causal estimates. arXiv Prepr arXiv200500649. 2020;1-13.DOI: 10.48550/arXiv.2005.00649

Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, et al. Metabolomics and multi-omics integration: a survey of computational methods and resources. Metabolites. 2020;10(5):202,1-34.DOI: 10.3390/metabo10050202.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.