Immunoinformatic approach to the design of a novel multi-epitope vaccine against Leishmania major fused to human IgG-Fc
Abstract
Background and purpose: Cutaneous leishmaniasis poses significant health and socioeconomic challenges, making vaccine development a top priority, especially in endemic regions. Cysteine proteases, KMP-11, and HASPB proteins are promising candidates for leishmaniasis vaccine development owing to their immunogenic properties and capacity to provoke robust immune responses, as evidenced by different investigations. This study aimed to design a recombinant chimeric protein (MEV-Fc) vaccine using multi-epitopes from these Leishmania major proteins.
Experimental approach: The antigens were subjected to immunoinformatic prediction and screening of HTL, CTL, and B-cell epitopes. The multi-epitope protein was designed with significantly high-scoring epitopes and suitable linkers. Natural adjuvants were then added to enhance immunogenicity. Vaccine potency was innovatively improved by covalently fusing human IgG1 Fc with multi-epitope protein. To investigate how the MEV-Fc vaccine interacts with Toll-like receptors, molecular docking, multi-scale normal mode analysis simulation, and computational immune simulation were employed to study humoral and cellular immune responses.
Findings/Results: The results demonstrated the vaccine's antigenicity, stability, and nontoxicity. The structural validation confirmed the accuracy of the 3D models, indicating robust interactions with TLR2 and TLR4, with binding free energies of -1269.9 and -1128.7 (kcal/mol), respectively. Immune simulation results showed significant increases in IgM and IgG antibody levels following three vaccinations, along with enhanced activation of B cells, helper T cells, and cytotoxic T lymphocytes.
Conclusion and implications: These findings provide novel insights for developing effective candidates for cutaneous leishmaniasis vaccines. However, laboratory experiments are necessary to evaluate its protective effects.
Keywords
Full Text:
PDFReferences
de Vries HJC, Schallig HD. Cutaneous leishmaniasis: a 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022;23(6):823-40DOI: 10.1007/s40257-022-00726-8.
Casulli A. New global targets for NTDs in the WHO roadmap 2021–2030. PLoS Negl Trop Dis. 2021;15(5):e0009373,1-10.DOI: 10.1371/journal.pntd.0009373.
Rabienia M, Mortazavidehkordi N, Roudbari Z, Daneshi R, Abdollahi A, Yousefian Langeroudi M, et al. Designing of a new multi-epitope vaccine against Leishmania major using Leish-F1 epitopes: An in-silico study. PLoS One. 2024;19(1):e0295495,1-19.DOI: 10.1371/journal.pone.0295495.
Mohammadi-Ghalehbin B, Najafi S, Razzaghi-Asl N. Synthesis and antileishmanial effect of a few cyclic and non-cyclic n-aryl enamino amide derivatives. Res Pharm Sci. 2020;15(4):340-349.DOI: 10.4103/1735-5362.293512.
Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, et al. Leishmania immunity: advancing immunotherapy and vaccine development. Microorganisms. 2020;8(8): 1201,1-21.DOI: 10.3390/microorganisms8081201.
Bacon KM, Hotez PJ, Kruchten SD, Kamhawi S, Bottazzi ME, Valenzuela JG, et al. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine. 2013;31(3):480-486.DOI: 10.1016/j.vaccine.2012.11.032.
Gillespie PM, Beaumier CM, Strych U, Hayward T, Hotez PJ, Bottazzi ME. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992-2995.DOI: 10.1016/j.vaccine.2015.12.071.
Saini I, Joshi J, Kaur S. Leishmania vaccine development: a comprehensive review. Cell Immunol. 2024;399-400.DOI: 10.1016/j.cellimm.2024.104826.
Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev. 2020;120(6):3210-3229.DOI: 10.1021/acs.chemrev.9b00472.
Mortazavi B, Molaei A, Fard NA. Multi-epitope vaccines, from design to expression; an in silico approach. Hum Immunol. 2024;85(3):110804,1-11.DOI: 10.1016/j.humimm.2024.110804.
Mahmoudzadeh-Niknam H, McKerrow JH. Leishmania tropica: cysteine proteases are essential for growth and pathogenicity. Exp Parasitol. 2004;106(3-4):158-163.DOI: 10.1016/j.exppara.2004.03.005.
Mundodi V, Kucknoor AS, Gedamu L. Role of Leishmania (Leishmania) chagasi amastigote cysteine protease in intracellular parasite survival: studies by gene disruption and antisense mRNA inhibition. BMC Mol Biol. 2005;6:3,1-12.DOI: 10.1186/1471-2199-6-3.
De Mendonca SCF, Cysne-Finkelstein L, de Matos DCS. Kinetoplastid membrane protein-11 as a vaccine candidate and a virulence factor in Leishmania. Front Immunol. 2015;6:524,1-6.DOI: 10.3389/fimmu.2015.00524.
Mortazavidehkordi N, Fallah A, Abdollahi A, Kia V, Khanahmad H, Najafabadi ZG, et al. A lentiviral vaccine expressing KMP11-HASPB fusion protein increases immune response to Leishmania major in BALB/C. Parasitol Res. 2018;117(7):2265-2273.DOI: 10.1007/s00436-018-5915-6.
Younis BM, Osman M, Khalil EAG, Santoro F, Furini S, Wiggins R, et al. Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan. Mol Ther. 2021;29(7):2366-2377.DOI: 10.1016/j.ymthe.2021.03.020.
Jafari R, Zolbanin NM, Rafatpanah H, Majidi J, Kazemi T. Fc-fusion proteins in therapy: an updated view. Curr Med Chem. 2017;24(12):1228-1237.DOI: 10.2174/0929867324666170113112759.
Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868-876.DOI: 10.1016/j.copbio.2011.06.012.
Alleva DG, Delpero AR, Scully MM, Murikipudi S, Ragupathy R, Greaves EK, et al. Development of an IgG-Fc fusion COVID-19 subunit vaccine, AKS-452. Vaccine. 2021;39(45):6601-6613.DOI: 10.1016/j.vaccine.2021.09.077.
Janssen YF, Feitsma EA, Boersma HH, Alleva DG, Lancaster TM, Sathiyaseelan T, et al. Phase I interim results of a phase I/II study of the IgG-Fc fusion COVID-19 subunit vaccine, AKS-452. Vaccine. 2022;40(9):1253-1260.DOI: 10.1016/j.vaccine.2022.01.043.
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007; 8:4,1-7.DOI: 10.1186/1471-2105-8-4.
Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012;40(W1):W525-W530.DOI: 10.1093/nar/gks438.
Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct. 2013;8:30,1-15.DOI: 10.1186/1745-6150-8-30.
Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40-48.DOI: 10.1002/prot.21078.
Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24-W29.DOI: 10.1093/nar/gkx346.
Dimitrov I, Naneva L, Doytchinova I, Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014;30(6):846-851.DOI: 10.1093/bioinformatics/btt619.
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery C, et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8(9):e73957,1-10.DOI: 10.1371/journal.pone.0073957.
Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics. 2010;26(23):2936-2943.DOI: 10.1093/bioinformatics/btq551.
Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009;25(17):2200-2207.DOI: 10.1093/bioinformatics/btp386.
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.
DOI: 10.1186/1471-2105-9-40.
Yang J, Zhang Y. Protein structure and function prediction using I-TASSER. Curr Protoc Bioinformatics. 2015;52(1):1-24.DOI: 10.1002/0471250953.bi0508s52.
Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013;41(Web Server issue):W384-388.DOI: 10.1093/nar/gkt458.
Faria MS, Reis FC, Lima AP. Toll-like receptors in leishmania infections: guardians or promoters? J Parasitol Res. 2012;2012:930257,1-12.DOI: 10.1155/2012/930257.
Lopez-Blanco JR, Aliaga JI, Quintana-Orti ES, Chacon P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 2014;42(Web Server issue):W271-W276.DOI: 10.1093/nar/gku339.
Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. 2010;5(4):e9862,1-14.DOI: 10.1371/journal.pone.0009862.
Castiglione F, Mantile F, De Berardinis P, Prisco A. How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput Math Methods Med. 2012;2012:1-9.DOI: 10.1155/2012/842329.
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev. 2019;119(3):1626-1665.DOI: 10.1021/acs.chemrev.8b00290.
Bhattacharjee M, Banerjee M, Mukherjee A. In silico designing of a novel polyvalent multi-subunit peptide vaccine leveraging cross-immunity against human visceral and cutaneous leishmaniasis: an immunoinformatics-based approach. J Mol Model. 2023;29(4):99,1-22.DOI: 10.1007/s00894-023-05503-w.
Ghatee MA, Taylor WR, Karamian M. The geographical distribution of cutaneous leishmaniasis causative agents in Iran and its neighboring countries, a review. Front Public Health. 2020;8:11,1-13.DOI: 10.3389/fpubh.2020.00011.
Rahnama V, Motazedian MH, Mohammadi-Samani S, Asgari Q, Ghasemiyeh P, Khazaei M. Artemether-loaded nanostructured lipid carriers: preparation, characterization, and evaluation of: in vitro: effect on: Leishmania major. Res Pharm Sci. 2021;16(6): 623-633.DOI: 10.4103/1735-5362.327508.
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors. 2016;9(1):277,1-15.DOI: 10.1186/s13071-016-1553-y.
Whyte DC, Zufferey R. Cutaneous leishmaniasis: update on vaccine development. Hum Parasit Dis (Auckl). 2017;9:10,1-15 DOI: 10.4137/HPD.S16588.
María R, Arturo C, Alicia JA, Paulina M, Gerardo AO. The impact of bioinformatics on vaccine design and development. Vaccines. 2017;2:3-6.DOI: 10.5772/intechopen.69273.
Dubie T, Mohammed Y. Review on the role of host immune response in protection and immunopathogenesis during cutaneous leishmaniasis infection. J Immunol Res. 2020;2020:2496713, 1-12.DOI: 10.1155/2020/2496713.
Glennie ND, Scott P. Memory T cells in cutaneous leishmaniasis. Cell Immunol. 2016;309:50-54.DOI: 10.1016/j.cellimm.2016.07.010.
Conde L, Maciel G, de Assis GM, Freire-de-Lima L, Nico D, Vale A, et al. Humoral response in Leishmaniasis. Front Cell Infect Microbiol. 2022;12:1063291,1-8.DOI: 10.3389/fcimb.2022.1063291.
Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep. 2018;9044,1-19.DOI: 10.1038/s41598-018-26689-7.
Shanmugam A, Rajoria S, George AL, Mittelman A, Suriano R, Tiwari RK. Synthetic Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PloS One. 2012;7(2):e30839,1-10.DOI: 10.1371/journal.pone.0030839.
Kropf P, Freudenberg MA, Modolell M, Price HP, Herath S, Antoniazi S, et al. Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect Immun. 2004;72(4):1920-1928.DOI: 10.1128/IAI.72.4.1920-1928.2004.
Mirbaha S, Rezaei M, Emamzadeh R, Zarkesh Esfahani SH. Design and production of a novel chimeric human growth hormone superagonist fused to human Fc domain. Res Pharm Sci. 2022;17(3): 284-293.DOI: 10.4103/1735-5362.343082.
Tuon FF, Amato VS, Bacha HA, Almusawi T, Duarte MI, Amato Neto V. Toll-like receptors and leishmaniasis. Infect Immun. 2007;76(3): 866-872.DOI: 10.1128/IAI.01090-07.
Margaroni M, Agallou M, Tsanaktsidou E, Kammona O, Kiparissides C, Karagouni E. Immunoinformatics approach to design a multi-epitope nanovaccine against Leishmania parasite: elicitation of cellular immune responses. Vaccines. 2023;11(2): 304,1-26.DOI: .10.3390/vaccines11020304.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.