MicroRNA-219 in the central nervous system: a potential theranostic approach

Nahal Shamaeizadeh , Mina Mirian

Abstract


Despite the recent therapeutic advances in neurological disorders, curative therapy remains a serious challenge in many cases. Even though recent years have witnessed the development of gene therapy from among the different therapeutic approaches affecting pathophysiological mechanisms, intriguing aspects exist regarding the effectiveness, safety, and mechanism of action of gene therapies. Micro ribonucleic acid (microRNA-miRNA), as a fundamental gene regulator, regulates messenger ribonucleic acid (mRNA) by directly binding through the 3′-untranslated region (3′-UTR). MicroRNA-219 is a specific brain-enriched miRNA associated with neurodevelopmental disorders that play crucial roles in the differentiation of oligodendrocyte progenitorcells, promotion of oligodendrocyte maturation, remyelination, and cognitive functions to the extent that it can be considered a potential therapeutic option for demyelination in multiple sclerosis and spinal cord injury and reverse chronic inflammation pains. Additionally, miR-219 regulates the circadian clock, influencing the duration of the circadian clock period. This regulation can impact mood stability and is associated with phase fluctuations in bipolar patients. Furthermore, miR-219 also plays a role in modulating tau toxicity, which is relevant to the pathophysiology of Alzheimer's disease and schizophrenia. Finally, it reportedly has protective effects against seizures and Parkinson's disease, as well as neoplasms, by inhibiting proliferation, suppressing invasion, and inducing cell death in tumor cells. Exploring the miR-219 molecular pathways and their therapeutic effects on central nervous system disorders and the mechanisms involved, the present review study aims to illustrate how this information may change the future of gene therapy.


Keywords


Brain malignancies; Gene expression regulation; MicroRNA-219; Nervous system diseases; Neurodegenerative diseases; Neuroprotective.

Full Text:

PDF

References


Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590-610.DOI: 10.1016/j.molonc.2012.09.006.

John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS, et al. Human microRNA targets. PLoS Biol. 2004;2(11):e363,1862-1879.DOI: 10.1371/journal.pbio.0020363.

Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175-205.DOI: 10.1146/annurev.cellbio.23.090506.123406.

Griffiths‐Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(suppl_1):D109-D111.DOI: 10.1093/nar/gkh023.

Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(suppl_1):D140-D144.DOI: 10.1093/nar/gkj112.

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol cell Biol. 2014;15(8):509-524.DOI: 10.1038/nrm3838.

Abe M, Bonini NM. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol. 2013;23(1):30-36.DOI: 10.1016/j.tcb.2012.08.013.

Nelson PT, Wang W, Rajeev BW. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 2008;18(1):130-138. DOI: 10.1111/j.1750-3639.2007.00120.x.

Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C, et al. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell. 2017;40(6):566-582.DOI: 10.1016/j.devcel.2017.03.001.

Santa-Maria I, Alaniz ME, Renwick N, Cela C, Fulga TA, Van Vactor D, et al. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest. 2015;125(2):681-686.DOI: 10.1172/JCI78421.

Darzi L, Boshtam M, Shariati L, Kouhpayeh S, Gheibi A, Mirian M, et al. The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy. Res Pharm Sci. 2017;12(6):456-464.DOI: 10.4103/1735-5362.217426.

Rao SAM, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA, et al. MiR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One. 2013;8(5):e63164,1-10.DOI: 10.1371/journal.pone.0063164.

Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci,2017;12(2):88-98.DOI: 10.4103/1735-5362.202447.

Huang N, Lin J, Ruan J, Su N, Qing R, Liu F, et al. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett. 2012;586(6):884-891.DOI: 10.1016/j.febslet.2012.02.017.

Wang Q, Zhu L, Jiang Y, Xu J, Wang F, He Z. miR‑219‑5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin. Oncol Lett. 2017;13(3):1319-1324.DOI: 10.3892/ol.2017.5570.

Marcuzzo S, Bonanno S, Kapetis D, Barzago C, Cavalcante P, D’Alessandro S, et al. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Mol Brain. 2015;8(1):1-13.DOI: 10.1186/s13041-015-0095-0.

Wu H, Zhao J, Fu B, Yin S, Song C, Zhang J, et al. Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells. Cell Death Dis. 2017;8(7):e2953, 1-12. DOI:10.1038/cddis.2017.336.

Shi JA, Lu DL, Huang X, Tan W. MiR-219 inhibits the proliferation, migration and invasion of medulloblastoma cells by targeting CD164. Int J Mol Med. 2014;34(1):237-243.DOI: 10.3892/ijmm.2014.1749.

Tu M, Cai L, Zheng W, Su Z, Chen Y, Qi S. CD164 regulates proliferation and apoptosis by targeting PTEN in human glioma. Mol Med Rep. 2017;15(4):1713-1721.DOI: 10.3892/mmr.2017.6204.

Hide T, Komohara Y, Miyasato Y, Nakamura H, Makino K, Takeya M, et al. Oligodendrocyte progenitor cells and macrophages/microglia produce glioma stem cell niches at the tumor border. EBioMedicine. 2018;30:94-104.DOI: 10.1016/j.ebiom.2018.02.024.

Zhi F, Zhou G, Wang S, Shi Y, Peng Y, Shao N, et al. A microRNA expression signature predicts meningioma recurrence. Int J cancer. 2013;132(1):128-136.DOI: 10.1002/ijc.27658.

Hide T, Shibahara I, Kumabe T. Novel concept of the border niche: glioblastoma cells use oligodendrocytes progenitor cells (GAOs) and microglia to acquire stem cell-like features. Brain Tumor Pathol. 2019;36(2):63-73.DOI: 10.1007/s10014-019-00341-2.

Jiang B, Li M, Ji F, Nie Y. MicroRNA‑219 exerts a tumor suppressive role in glioma via targeting Sal‑like protein 4. Exp Ther Med. 2017;14(6):6213-6221.DOI: 10.3892/etm.2017.5292.

Jiang Y, Yin L, Jing H, Zhang H. MicroRNA-219-5p exerts tumor suppressor function by targeting ROBO1 in glioblastoma. Tumor Biol. 2015;36(11):8943-8951.DOI: 10.1007/s13277-015-3651-4.

Buruiană A, Florian Ștefan I, Florian AI, Timiș TL, Mihu CM, Miclăuș M, et al. The roles of miRNA in glioblastoma tumor cell communication: diplomatic and aggressive negotiations. Int J Mol Sci. 2020;21(6):1950,1-35.DOI: 10.3390/ijms21061950.

Li J, Chen W, Yi Y, Tong Q. MiR‐219‐5p inhibits tau phosphorylation by targeting TTBK1 and GSK‐3β in Alzheimer’s disease. J Cell Biochem. 2019; 120(6):9936-0046.DOI: 10.1002/jcb.28276.

Patel AA, Ganepola GAP, Rutledge JR, Chang DH. The potential role of dysregulated miRNAs in Alzheimer’s disease pathogenesis and progression. J Alzheimer’s Dis. 2019;67(4):1123-1145.DOI: 10.3233/JAD-181078.

Hudish LI, Blasky AJ, Appel B. MiR-219 regulates neural precursor differentiation by direct inhibition of apical par polarity proteins. Dev Cell. 2013;27(4):387-398.DOI: 10.1016/j.devcel.2013.10.015.

Ling Y, Sun L, Wang D, Jiang J, Sun W, Ai W, et al. Triclosan induces zebrafish neurotoxicity by abnormal expression of miR-219 targeting oligodendrocyte differentiation of central nervous system. Arch Toxicol. 2020;94(3):857-871.DOI: 10.1007/s00204-020-02661-1.

Shin D, Shin J, McManus MT, Ptáček LJ, Fu Y. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol. 2009;66(6): 843-857.DOI: 10.1002/ana.21927.

Liu S, Ren C, Qu X, Wu X, Dong F, Chand YK, et al. MiR‐219 attenuates demyelination in cuprizone‐induced demyelinated mice by regulating monocarboxylate transporter 1. Eur J Neurosci. 2017;45(2):249-259.DOI: 10.1111/ejn.13485.

Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron. 2010;65(5):612-626.DOI: 10.1016/j.neuron.2010.02.018.

Olsen LC, O’Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct. 2017;222(7):3107-3126.DOI: 10.1007/s00429-017-1389-z.

Nguyen LH, Ong W, Wang K, Wang M, Nizetic D, Chew SY. Effects of miR-219/miR-338 on microglia and astrocyte behaviors and astrocyte-oligodendrocyte precursor cell interactions. Neural Regen Res. 2020;15(4):739-747.DOI: 10.4103/1673-5374.266922.

Moreels M, Vandenabeele F, Dumont D, Robben J, Lambrichts I. Alpha‐smooth muscle actin (α‐SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor‐beta 1 (TGF‐β1). Neuropathol Appl Neurobiol. 2008;34(5):532-546.DOI: 10.1111/j.1365-2990.2007.00910.x.

Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, et al. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci U S A. 2009;106(9):3507-3512.DOI: 10.1073/pnas.0805854106.

Zucchi FCR, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One. 2013;8(2):e56967,1-9.DOI: 10.1371/journal.pone.0056967.

Hass J, Walton E, Wright C, Beyer A, Scholz M, Turner J, et al. Associations between DNA methylation and schizophrenia-related intermediate phenotypes—a gene set enrichment analysis. Prog Neuro-Psychopharmacology Biol Psychiatry. 2015;59:31-39.DOI: 10.1016/j.pnpbp.2015.01.006.

Cheng HYM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, et al. MicroRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54(5):813-829.DOI: 0.1016/j.neuron.2007.05.017.

Liu K, Wang R. MicroRNA-mediated regulation in the mammalian circadian rhythm. J Theor Biol. 2012;304:103-110.DOI: 10.1016/j.jtbi.2012.03.037.

Wang D, Wang X, Liu X, Jiang L, Yang G, Shi X, et al. Inhibition of miR-219 alleviates arsenic-induced learning and memory impairments and synaptic damage through up-regulating CaMKII in the hippocampus. Neurochem Res. 2018;43(4):948-958.DOI: 10.1007/s11064-018-2500-4.

Arnes M, Kim YA, Lannes J, Alaniz ME, Cho JD, McCabe BD, et al. MiR-219 deficiency in Alzheimer’s disease contributes to neurodegeneration and memory dysfunction through post-transcriptional regulation of tau-kinase network. bioRxiv. 2019;607176,1-18.DOI: 10.1101/607176.

Nair VD, Ge Y. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson’s disease striatum. Neurosci Lett. 2016;629:99-104.DOI: 10.1016/j.neulet.2016.06.061.

Li J, Li L, Shen Y. Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation. Exp Ther Med. 2018;15(4):3563-3569.DOI: 10.3892/etm.2018.5829.

Inamura N, Go S, Watanabe T, Takase H, Takakura N, Nakayama A, et al. Reduction in miR‐219 expression underlies cellular pathogenesis of oligodendrocytes in a mouse model of Krabbe disease. Brain Pathol. 2021;31(5):12951,1-12.DOI: 10.1111/bpa.12951.

Minutti-Zanella C, Bojalil-Álvarez L, Garcia-Villasenor E, Lopez-Martinez B, Perez-Turrent M, Murrieta-Álvarez I, et al. MiRNAs in multiple sclerosis: a clinical approach. Mult Scler Relat Disord. 2022;103835.DOI: 10.1016/j.msard.2022.103835.

Li F, Zhou MW, Liu N, Yang YY, Xing HY, Lu Y, et al. MicroRNA-219 inhibits proliferation and induces differentiation of oligodendrocyte precursor cells after contusion spinal cord injury in rats. Neural Plast. 2019;2019:1-13.DOI: 10.1155/2019/9610687.

Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect Med. 2017;7(8):a024117. DOI: 10.1101/cshperspect.a024117,1-16.

Rojas P, Ramírez AI, Fernández-Albarral JA, López-Cuenca I, Salobrar-García E, Cadena M, et al. Amyotrophic lateral sclerosis: a neurodegenerative motor neuron disease with ocular involvement. Front Neurosci. 2020;14:566858,1-16.DOI: 10.3389/fnins.2020.566858.

Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, et al. Screening the expression characteristics of several miRNAs in G93A‐SOD1 transgenic mouse: altered expression of miRNA‐124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem. 2018;145(1):51-67.DOI: 10.1111/jnc.14171.

Pehar M, Harlan BA, Killoy KM, Vargas MR. Role and therapeutic potential of astrocytes in amyotrophic lateral sclerosis. Curr Pharm Des. 2017;23(33):5010-5021.DOI: 10.2174/1381612823666170622095802.

Mirian M, Taghizadeh R, Khanahmad H, Salehi M, Jahanian-Najafabadi A, Sadeghi-Aliabadi H, et al. Exposition of hepatitis B surface antigen (HBsAg) on the surface of HEK293T cell and evaluation of its expression. Res Pharm Sci. 2016;11(5):366-373.DOI: 10.4103/1735-5362.192485.

Christoforidou E, Moody L, Joilin G, Simoes FA, Gordon D, Talbot K, et al. An ALS-associated mutation dysregulates microglia-derived extracellular microRNAs in a sex-specific manner. Dis Model Mech. 2024;17(5):dmm050638,1-16.DOI: 10.1242/dmm.050638.

Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077-1098.DOI: 10.1152/physrev.00041.2013.

Chi L, Ke Y, Luo C, Li B, Gozal D, Kalyanaraman B, et al. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells. 2006;24(1):34-43.DOI: 10.1634/stemcells.2005-0076.

Prieto‐Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: at the intersection between healthy and diseased embryonic development. Bioessays. 2021;43(7):2100073,1-20. DOI: 10.1002/bies.202100073.

Nicoloso MS, Calin GA. MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathol. 2008;18(1):122-129.DOI: 10.1111/j.1750-3639.2007.00119.x.

Rao SAM, Santosh V, Somasundaram K. Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol. 2010;23(10):1404-1417.DOI: 10.1038/modpathol.2010.135.

Li H, Guan C. HOTAIR inhibits the proliferation of glioblastoma cells by targeting miR-219. Cancer Biomark. 2020;28(1):41-47.DOI: 10.3233/CBM-190467.

Guo Y, Hong W, Wang X, Zhang P, Körner H, Tu J, et al. MicroRNAs in microglia: how do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci. 2019;12:125,1-14.DOI: 10.3389/fnmol.2019.00125.

Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev Neurosci. 2018;29(2):161-182.DOI: 10.1515/revneuro-2017-0042.

Gugliandolo A, Chiricosta L, Boccardi V, Mecocci P, Bramanti P, Mazzon E. MicroRNAs modulate the pathogenesis of Alzheimer’s disease: an in silico analysis in the human brain. Genes (Basel). 2020;11(9):983,1-13.DOI: 10.3390/genes11090983.

Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev. 2013;12(1):289-309.DOI: 10.1016/j.arr.2012.06.003.

Crespo-Biel N, Theunis C, Van Leuven F. Protein Tau: Prime Cause of Synaptic and Neuronal Degeneration in Alzheimer′ s Disease. International journal of Alzheimer’s disease. 2012;2012(1):251426. DOI: 10.1155/2012/251426.

Coninx E, Chew YC, Yang X, Guo W, Coolkens A, Baatout S, et al. Hippocampal and cortical tissue-specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer’s disease. Aging (Albany NY). 2020;12(20):20817-20834.DOI: 10.18632/aging.104056.

Galloway DA, Gowing E, Setayeshgar S, Kothary R. Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia. 2020;68(5):859-577.DOI: 10.1002/glia.23711.

Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron. 2010;65(5):597-611.DOI: 10.1016/j.neuron.2010.01.027.

Suster I, Feng Y. Multifaceted regulation of microRNA biogenesis: essential roles and functional integration in neuronal and glial development. Int J Mol Sci. 2021;22(13):6765,1-21. DOI: 10.3390/ijms22136765.

Li JS, Yao ZX. MicroRNAs: novel regulators of oligodendrocyte differentiation and potential therapeutic targets in demyelination-related diseases. Mol Neurobiol. 2012;45(1):200-212.DOI: 10.1007/s12035-011-8231-z.

Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci. 2020;117202,1-13.DOI: 10.1016/j.jns.2020.117202.

Wang R. Role of the oligodendrocyte-enriched ectonucleotide pyrophosphatase-6 in energy metabolism. 2022;1-200.DOI: 10.7488/era/1906.

Zhang S, Rasai A, Wang Y, Xu J, Bannerman P, Erol D, et al. The stem cell factor Sox2 is a positive timer of oligodendrocyte development in the postnatal murine spinal cord. Mol Neurobiol. 2018;55(12):9001-9015.DOI: 10.1007/s12035-018-1035-7.

Nazari B, Soleimani M, Ebrahimi-Barough S, Enderami SE, Kazemi M, Negahdari B, et al. Overexpression of miR-219 promotes differentiation of human induced pluripotent stem cells into pre-oligodendrocyte. J Chem Neuroanat. 2018;91:8-16.DOI: 10.1016/j.jchemneu.2018.03.001.

Ebrahimi-Barough S, Kouchesfehani HM, Ai J, Mahmoodinia M, Tavakol S, Massumi M. Programming of human endometrial-derived stromal cells (EnSCs) into pre-oligodendrocyte cells by overexpression of miR-219. Neurosci Lett. 2013;537:65-70.DOI: 10.1016/j.neulet.2013.01.022.

Ermakov EA, Kabirova EM, Buneva VN, Nevinsky GA. IgGs-abzymes from the sera of patients with multiple sclerosis recognize and hydrolyze miRNAs. Int J Mol Sci. 2021;22(6):2812,1-21.DOI: 10.3390/ijms22062812.

Shamaeizadeh N, Varshosaz J, Mirian M, Aliomrani M. Glutathione targeted tragacanthic acid-chitosan as a non-viral vector for brain delivery of miRNA-219a-5P: An in vitro/in vivo study. Int J Biol Macromol. 2022;200:543-556. DOI: 10.1016/j.ijbiomac.2022.01.100.

Zhu Y, Xu Q, Sha WP, Zhao KP, Wang LM. MiR-219-5p promotes spinal cord injury recovery by inhibiting NEUROD2-regulated inflammation and oxidative stress. Eur Rev Med Pharmacol Sci. 2019;23(1):37-43.DOI: 10.26355/eurrev_201901_16745.

Sun YJ, Yu Y, Zhu GC, Sun ZH, Xu J, Cao JH, et al. Association between single nucleotide polymorphisms in MiR219-1 and MiR137 and susceptibility to schizophrenia in a Chinese population. FEBS Open Bio. 2015;5:774-778.DOI: 10.1016/j.fob.2015.08.008.

Schratt G. MicroRNAs at the synapse. Nat Rev Neurosci. 2009;10(12):842-849.DOI: 10.1038/nrn2763.

Kocerha J, Dwivedi Y, Brennand KJ. Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Mol Psychiatry. 2015;20(6): 677-684.DOI: 10.1038/mp.2015.30.

Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res. 2010;1338:89-99.DOI: 10.1016/j.brainres.2010.03.035.

Hu XM, Cao SB, Zhang HL, Lyu DM, Chen LP, Xu H, et al. Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIγ. Mol Pain. 2016;12:1-12.DOI: 10.1177/1744806916666283.

Shi W, Du J, Qi Y, Liang G, Wang T, Li S, et al. Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res. 2012;46(2):198-204.DOI: 10.1016/j.jpsychires.2011.09.010.

Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7(1):1-15.DOI: 10.1038/ncomms10965.

Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis. 2019;131: 104162,1-18.DOI: 10.1016/j.nbd.2018.04.021.

Alkelai A, Shohat S, Greenbaum L, Schechter T, Draiman B, Chitrit-Raveh E, et al. Expansion of the GRIA2 phenotypic representation: a novel de novo loss of function mutation in a case with childhood onset schizophrenia. J Hum Genet. 2021;66(3): 339-343.DOI: 10.1038/s10038-020-00846-1.

Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in neurotoxicity. J Toxicol. 2012;2012:1-15.DOI: 10.1155/2012/870150.

Mirian M, Hariri A, Yadollahi M, Kohandel M. Circadian and immunity cycle talk in cancer destination: from biological aspects to in silico analysis. Cancers (Basel). 2022;14(6):1578,1-22.DOI: 10.3390/cancers14061578.

Shimizu K, Okada M, Takano A, Nagai K. SCOP, a novel gene product expressed in a circadian manner in rat suprachiasmatic nucleus. FEBS Lett. 1999;458(3):363-369.DOI: 10.1016/S0014-5793(99)01190-4.

Shimizu K, Mackenzie SM, Storm DR. SCOP/PHLPP and its functional role in the brain. Mol Biosyst. 2010;6(1):38-43.DOI: 10.1039/B911410F.

Shimizu K, Okada M, Nagai K, Fukada Y. Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. J Biol Chem. 2003;278(17):14920-14925.DOI: 10.1074/jbc.M213214200.

Kuss AW, Chen W. MicroRNAs in brain function and disease. Curr Neurol Neurosci Rep. 2008;8(3):190-197.DOI: 10.1007/s11910-008-0031-0.

Cheng HYM, Obrietan K. Revealing a role of microRNAs in the regulation of the biological clock. Cell Cycle. 2007;6(24):3034-3038.DOI: 10.4161/cc.6.24.5106.

Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A. 2002;99(11):7728-7733.DOI: 10.1073/pnas.102075599.

Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S, et al. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics. 2015;16(5):1-15.DOI: 10.1186/1471-2164-16-S5-S5.

Murai K, Qu Q, Sun G, Ye P, Li W, Asuelime G, et al. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model. Proc Natl Acad Sci U S A. 2014;111(25):9115-9120.DOI:10.1073/pnas.1406779111.

Martinez B, Peplow P V. MicroRNAs in Parkinson’s disease and emerging therapeutic targets. Neural Regen Res. 2017;12(12):1945-1959.DOI: 10.4103/1673-5374.221147.

Santos-Lobato BL, Vidal AF, Ribeiro-dos-Santos Â. Regulatory miRNA–mRNA networks in Parkinson’s disease. Cells. 2021;10(6):1410, 1-16.DOI: 10.3390/cells10061410.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.