Novel SARS-COV2 poly epitope phage-based candidate vaccine and its immunogenicity
Abstract
Background and purpose: The global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted widespread concern. Bacteriophages have recently gained attention as a cost-effective and stable alternative for vaccine development due to their adjuvant properties. This study aimed to design and validate a poly epitope composed of viral proteins.
Experimental approach: SARS-CoV-2 proteins (spike, nucleocapsid, membrane, envelope, papain-like protease, and RNA-dependent RNA polymerase) were selected for analysis. Immunoinformatic methods were employed to predict B and T cell epitopes, assessing their antigenicity, allergenicity, and toxicity. Epitopes meeting criteria for high antigenicity, non-allergenicity, and non-toxicity were linked to form poly epitopes. These sequences were synthesized and cloned into pHEN4 plasmids to generate Poly1 and Poly2 phagemid vectors. Recombinant Poly1 and Poly2 phages were produced by transforming M13ΔIII plasmids and phagemid vectors into E. coli TG1. Female Balb/c mice were immunized with a cocktail of Poly1 and Poly2 phages, and their serum was collected for ELISA testing. Interferon-gamma (IFN-γ) testing was performed on spleen-derived lymphocytes to evaluate immune system activation.
Findings/Results: Recombinant Poly1 and Poly2 phages were produced, and their titer was determined as 1013 PFU/mL. Efficient humoral immune responses and cellular immunity activation in mice were achieved following phage administration.
Conclusion and implication: Poly epitopes displayed on phages exhibit adjuvant properties, enhancing humoral and cellular immunity in mice. This suggests that phages could serve as adjuvants to bolster immunity against SARS-Cov-2. Recombinant phages could be applied as effective candidates for injectable and oral vaccine development strategies.
Keywords
Full Text:
PDFReferences
REFERENCES
Ullah M, Wahab A, Saeed S, Khan SU, Ali H, Humayun S, et al. Coronavirus and its terrifying inning around the globe: the pharmaceutical cares at the main frontline. Chemosphere. 2021;275:129968,1-14.DOI: 10.1016/j.chemosphere.2021.129968.
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. J Med Virol. 2020;92(6):568-576.DOI: 10.1002/jmv.25748.
Niu S, Tian S, Lou J, Kang X, Zhang L, Lian H, et al. Clinical characteristics of older patients infected with COVID-19: a descriptive study. Arch Gerontol Geriatr. 2020;89:104058,1-6.DOI: 10.1016/j.archger.2020.104058.
Munster VJ, Koopmans M, Van Doremalen N, Van Riel D, de Wit E. A novel coronavirus emerging in China-key questions for impact assessment. N Engl J Med. 2020;382(8):692-694.DOI: 10.1056/NEJMp2000929.
ElBagoury M, Tolba MM, Nasser HA, Jabbar A, Elagouz AM, Aktham Y, et al. The find of COVID-19 vaccine: challenges and opportunities. J Infect Public Health. 2021;14(3):389-416.DOI: 10.1016/j.jiph.2020.12.025.
Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Phys Chem Chem Phys 2022;24(3):1743-1759.DOI: 10.1039/D1CP04361G.
Iacobucci G. Covid-19: new UK variant may be linked to increased death rate, early data indicate. BMJ. 2021;372(230):n230,1-2.DOI: 10.1136/bmj.n230.
Shariare MH, Parvez MAK, Karikas GA, Kazi M. The growing complexity of COVID-19 drug and vaccine candidates: challenges and critical transitions. J Infect Public Health. 2021;14(2): 214-220.DOI: 10.1016%2Fj.jiph.2020.12.009.
Francis MJ. Recent advances in vaccine technologies. Vet Clin North Am Small Anim Pract. 2018;48(2):231-241.DOI: 10.1016/j.cvsm.2017.10.002.
Mendoza-Ramírez NJ, García-Cordero J, Shrivastava G, Cedillo-Barrón L. The key to increase immunogenicity of next‐generation COVID‐19 vaccines lies in the inclusion of the SARS‐CoV‐2 nucleocapsid protein. J Immunol Res. 2024;2024(1):9313267,1-18.DOI: 10.1155/2024/9313267.
Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27(4):671-680.e2.DOI: 10.1016/j.chom.2020.03.002.
Ahmad S, Navid A, Farid R, Abbas G, Ahmad F, Zaman N, et al. Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics. Eur J Pharm Sci. 2020;151:105387, 1-16.DOI: 10.1016/j.ejps.2020.105387.
Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, et al. Development of epitope‐based peptide vaccine against novel coronavirus 2019 (SARS‐COV‐2): immunoinformatics approach. J Med Virol. 2020;92(6):618-631.DOI: 10.1002/jmv.25736.
Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, et al. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: an immunoinformatics approach. Biomed Res Int. 2020;2020:1-12.DOI: 10.1155/2020/2683286.
van Houten NE, Henry KA, Smith GP, Scott JK. Engineering filamentous phage carriers to improve focusing of antibody responses against peptides. Vaccine. 2010;28(10):2174-2185.DOI: 10.1016/j.vaccine.2009.12.059.
Hess KL, Jewell CM. Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med. 2020;5(1):e10142,1-15.DOI: 10.1002/btm2.10142.
Guan P, Doytchinova IA, Zygouri C, Flower DR. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinformatics. 2003;2(1):63-66.PMID: 15130834.
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res. 2020;19(6): 2304-2315.DOI: 10.1021/acs.jproteome.9b00874.
Saha S, Raghava GPS. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40-48.DOI: 10.1002/prot.21078.
Saha S, Raghava GPS, editors. BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Artif Intel Res.2004;3239:1-2.
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4,1-7.DOI: 10.1186/1471-2105-8-4.
Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model. 2014;20(6):2278,1-6.DOI: 10.1007/s00894-014-2278-5.
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R. In silico approach for predicting toxicity of peptides and proteins. PloS One. 2013;8(9):e73957,1-10.DOI: 10.1371/journal.pone.0073957.
Buchan DW, Jones DT. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019;47(W1):W402-W407.DOI: 10.1093/nar/gkz297.
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. Springer.2005;571-607.DOI: 10.1385/1-59259-890-0:571.
Zhou X, Zheng W, Li Y, Pearce R, Zhang C, Bell EW, et al. I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nat Protoc. 2022;17(10):2326-2353.DOI: 10.1038/s41596-022-00728-0.
Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013;41(W1):W384-W388.DOI: 10.1093/nar/gkt458.
Lee H, Heo L, Lee MS, Seok C. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 2015;43(W1):W431-W435.DOI: 10.1093/nar/gkv495.
Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000;28(6):1102,1-2.DOI: 10.2144/00286ir01.
Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(suppl_2):W526-W531.DOI: 10.1093/nar/gki376.
Tjhung KF, Deiss F, Tran J, Chou Y, Derda R. Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display. Front Microbiol. 2015;6:340,1-11.DOI: 10.3389/fmicb.2015.00340.
Nakata Y, Tang X, Yokoyama KK. Preparation of competent cells for high-efficiency plasmid transformation of Escherichia coli. In: Cowell IG, Austin CA, editors. cDNA Libr Protoc. 1997. pp. 129-137.DOI: 10.1385/0-89603-383-X:129
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. Chembiochem. 2020;21(5):730-738.DOI: 10.1002/cbic.202000047.
Srivastava S, Kamthania M, Pandey RK, Saxena AK, Saxena V, Singh SK, et al. Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. J Biomol Struct Dyn. 2019;37(16):4345-4360.DOI: 10.1080/07391102.2018.1548977.
Chauhan V, Rungta T, Goyal K, Singh MP. Designing a multi-epitope based vaccine to combat kaposi sarcoma utilizing immunoinformatics approach. Sci Rep. 2019;9(1):2517,1-15.DOI: 10.1038/s41598-019-39299-8.
Shoari A, Khodabakhsh F, Ahangari Cohan R, Salimian M, Karami E. Anti-angiogenic peptides application in cancer therapy; a review. Res Pharm Sci. 2021;16(6):559-574.DOI: 10.4103/1735-5362.327503.
He R, Yang X, Liu C, Chen X, Wang L, Xiao M, et al. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model. Cell Mol Immunol. 2018;15(9):815-826.DOI: 10.1038/cmi.2017.3.
Zheng Y, He R, He M, Gu X, Wang T, Lai W, et al. Characterization of Sarcoptes scabiei cofilin gene and assessment of recombinant cofilin protein as an antigen in indirect-ELISA for diagnosis. BMC Infect Dis. 2015;16(1):1-7.DOI: 10.1186/s12879-016-1353-1.
Hou J, Liu Y, Hsi J, Wang H, Tao R, Shao Y. Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Hum Vaccin Immunother. 2014;10(5):1274-1283.DOI: 10.4161/hv.28371.
Kim HJ, Kim J-K, Seo SB, Lee HJ, Kim H-J. Intranasal vaccination with peptides and cholera toxin subunit B as adjuvant to enhance mucosal and systemic immunity to respiratory syncytial virus. Arch Pharm Res. 2007;30(3):366-371.DOI: 10.1007/BF02977620.
Tamura S, Funato H, Nagamine T, Aizawa C, Kurata T. Effectiveness of cholera toxin B subunit as an adjuvant for nasal influenza vaccination despite pre-existing immunity to CTB. Vaccine. 1989;7(6):503-505.DOI: 10.1016/0264-410x(89)90273-9.
Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect Genet Evol. 2017;49:309-317.DOI: 10.1016/j.meegid.2017.02.007.
Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):8285,1-12.DOI: 10.1038/s41598-017-08842-w.
Bazhan SI, Antonets DV, Karpenko LI, Oreshkova SF, Kaplina ON, Starostina EV, et al. In silico designed Ebola virus T-cell multi-epitope DNA vaccine constructions are immunogenic in mice. Vaccines. 2019;7(2):34,1-15.DOI: 10.3390/vaccines7020034.
Saha S, Raghava GPS. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006;34(suppl_2):W202-W209.DOI: 10.1093/nar/gkl343.
Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front immunol. 2020;11:1581,1-13.DOI: 10.3389/fimmu.2020.01581.
Huffman A, Ong E, Hur J, D’Mello A, Tettelin H, He Y. COVID-19 vaccine design using reverse and structural vaccinology, ontology-based literature mining and machine learning. Brief Bioinform 2022;23(4):1-16.DOI: 10.1093/bib/bbac190.
Walker JM. The proteomics protocols handbook: Springer; 2005. pp. 571-607. DOI: 10.1385/1592598900.
Dey AK, Malyala P, Singh M. Physicochemical and functional characterization of vaccine antigens and adjuvants. Expert Rev Vaccines. 2014;13(5): 671-685.DOI: 10.1586/14760584.2014.907528.
Rowaiye AB, Oli AN, Asala MT, Nwonu EJ, Njoku MO, Asala OO, et al. Design of multiepitope vaccine candidate from a major capsid protein of the African swine fever virus. Vet Vaccine. 2023;2(1):100013, 1-15.DOI: 10.1016/j.vetvac.2023.100013.
Almofti YA, Abd-Elrahman KA, Eltilib EE. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunol. 2021;22:1-20.DOI: 10.1186/s12865-021-00412-0.
Mehrab R, Sedighian H, Sotoodehnejadnematalahi F, Halabian R, Fooladi AAI. A comparative study of the arazyme-based fusion proteins with various ligands for more effective targeting cancer therapy: an in-silico analysis. Res Pharm Sci. 2023;18(2):159-176.DOI: 10.4103/1735-5362.367795.
Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One. 2019;14(10):e0223844,1-28.DOI: 10.1371/journal.pone.0223844.
Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, et al. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Inform Med Unlocked. 2021;24:100578,1-12.DOI: 10.1016/j.imu.2021.100578.
Rasheed MA, Raza S, Zohaib A, Riaz MI, Amin A, Awais M, et al. Immunoinformatics based prediction of recombinant multi-epitope vaccine for the control and prevention of SARS-CoV-2. Alex Eng J. 2021;60(3):3087-3097.DOI: 10.1016/j.aej.2021.01.046.
Naveed M, Tehreem S, Arshad S, Bukhari SA, Shabbir MA, Essa R, et al. Design of a novel multiple epitope-based vaccine: an immunoinformatics approach to combat SARS-CoV-2 strains. J Infect Public Health. 2021;14(7):938-946.DOI: 10.1016/j.jiph.2021.04.010.
Joshi A, Joshi BC, Mannan MA, Kaushik V. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform Med Unlocked. 2020;19:100338,1-10.DOI: 10.1016/j.imu.2020.100338.
Sarkar B, Ullah MA, Araf Y, Rahman MS. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform Med Unlocked. 2020;21:100478,1-18.DOI: 10.1016/j.imu.2020.100478.
Bashir Z, Ahmad SU, Kiani BH, Jan Z, Khan N, Khan U, et al. Immunoinformatics approaches to explore B and T cell epitope-based vaccine designing for SARS-CoV-2 Virus. Pak J Pharm Sci. 2021;34(1):345-352.PMID: 34275860.
Oliveira SC, de Magalhaes MT, Homan EJ. Immunoinformatic analysis of SARS-CoV-2 nucleocapsid protein and identification of COVID-19 vaccine targets. Front Immunol. 2020;11:587615, 1-10.DOI: 10.3389/fimmu.2020.587615.
Shafiee F, Rabbani M, Behdani M, Jahanian-Najafabadi A. Expression and purification of truncated diphtheria toxin, DT386, in Escherichia coli: an attempt for production of a new vaccine against diphtheria. Res Pharm Sci. 2016;11(5):428-434.DOI: 10.4103/1735-5362.192496.
González-Mora A, Hernández-Pérez J, Iqbal HM, Rito-Palomares M, Benavides J. Bacteriophage-based vaccines: a potent approach for antigen delivery. Vaccines. 2020;8(3):504,1-24.DOI: 10.3390/vaccines8030504.
Ghajavand H, Esfahani BN, Havaei A, Fazeli H, Jafari R, Moghim S. Isolation of bacteriophages against multidrug resistant Acinetobacter baumannii. Res Pharm Sci. 2017;12(5):373-380.DOI: 10.4103/1735-5362.213982.
Staquicini DI, Tang FH, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, et al. Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proc Natl Acad Sci U S A. 2021;118(30):e2105739118,1-9.DOI: 10.1073/pnas.2105739118.
Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021;12(1):372,1-14.DOI: 10.1038/s41467-020-20653-8.
Bos R, Rutten L, van der Lubbe JE, Bakkers MJ, Hardenberg G, Wegmann F, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines. 2020;5(1):91,1-11.DOI: 10.1038/s41541-020-00243-x.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.