Cinnamaldehyde potentiates cytotoxic and apoptogenic effects of doxorubicin in prostate cancer cell line
Abstract
Background and purpose: Nowadays, herbal medicine has been utilized to treat various diseases such as cancer, which showed successful therapeutic efficacy in previous studies. This study for the first time evaluated the cytotoxic potential of cinnamaldehyde (CIN) alone and in combination with doxorubicin (DOX), a well-known potent anti-tumor agent, on the proliferation of prostatic cancer cell line (PC3).
Experimental approach: The cytotoxicity and apoptotic activities of CIN and DOX, either separately or together, were determined on PC3 cells by the MTT test and Annexin V/PI assay, respectively. To further investigate which apoptotic pathway participated in cell death a collection of prominent markers of apoptosis induction including caspase-3/7 activations, mitochondrial membrane potential (MMP), and phosphatidyl serine translocation were detected.
Findings/Results: The different concentrations of CIN and DOX significantly inhibited the proliferation of PC3 cells in a concentration-dependent way within a 24-h treatment. In addition, the induction of apoptosis by CIN was accompanied by an increase in the activation of caspase-3/7 in PC3 cells with IC50 concentrations of 12.5 and 10 µg/mL for CIN and DOX, respectively. Moreover, the morphological observations obtained from flow cytometry MMP and caspase-3/7 activity assays, altogether, revealed the potential effect of CIN on apoptosis induced in PC3 cells by DOX.
Conclusions and implications: Taken together, the current study concluded that the combination of CIN and DOX could lead to the production of a potential therapeutic agent for prostate cancer. However, further in vivo and clinical studies are still needed to validate this combination in prostate cancer therapy.
Keywords
Full Text:
PDFReferences
Cooperberg MR, Park S, Carroll PR. Prostate cancer 2004: insights from national disease registries. Oncology (Williston Park). 2004;18(10):1239-1247, discussion: 1248-1250, 1256-1258.PMID: 15526829.
Bu H, Bormann S, Schäfer G, Horninger W, Massoner P, Neeb A, et al. The anterior gradient 2 (AGR2) gene is overexpressed in prostate cancer and may be useful as a urine sediment marker for prostate cancer detection. Prostate. 2011;71(6):575-587.DOI. 10.1002/pros.21273.
Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011;71(15):1668-1679.DOI: 10.1002/pros.21383.
van Bokhoven A, Varella‐Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate. 2003;57(3):205-225.DOI: 10.1002/pros.10290.
Martin-Cordero C, Leon-Gonzalez AJ, Calderon-Montano JM, Burgos-Moron E, Lopez-Lazaro M. Pro-oxidant natural products as anticancer agents. Curr Drug Targets. 2012;13(8):1006-1028.DOI: 10.2174/138945012802009044.
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, et al. Effective medicinal plant in cancer treatment, part 2: review study. J Evid Based Complementary Altern Med. 2017;22(4):982-995.DOI: 10.1177/2156587217696927.
Dean M, Lou H. Genetics and genomics of prostate cancer. Asian J Androl. 2013;15(3):309-313.DOI: 10.1038/aja.2013.29.
Ferro TAF, Souza EB, Suarez MAM, Rodrigues JFS, Pereira DMS, Mendes SJF, et al. Topical application of cinnamaldehyde promotes faster healing of skin wounds infected with Pseudomonas aeruginosa. Molecules. 2019;24(8):1627,1-17.DOI: 10.3390/molecules24081627.
El-Tanbouly GS, Abdelrahman RS. Novel anti-arthritic mechanisms of trans-cinnamaldehyde against complete Freund’s adjuvant-induced arthritis in mice: involvement of NF-кB/TNF-α and IL-6/IL-23/IL-17 pathways in the immuno-inflammatory responses. Inflammopharmacology. 2022;30(5): 1769-1780.DOI: 10.1007/s10787-022-01005-y.
Wu CE, Zhuang YW, Zhou JY, Liu SL, Wang RP, Shu P. Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp Cell Res. 2019;383(1):111500,1-11.DOI: 10.1016/j.yexcr.2019.111500.
Li J, Teng Y, Liu S, Wang Z, Chen Y, Zhang Y, et al. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol Rep. 2016;35(3):1501-1510.DOI: 10.3892/or.2015.4493.
Abbasi A, Hajialyani M, Hosseinzadeh L, Jalilian F, Yaghmaei P, Navid SJ, et al. Evaluation of the cytotoxic and apoptogenic effects of cinnamaldehyde on U87MG cells alone and in combination with doxorubicin. Res Pharm Sci. 2020;15(1):26-35.DOI: 10.4103/1735-5362.278712.
Chew EH, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, et al. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med. 2010;48(1):98-111.DOI: 10.1016/j.freeradbiomed.2009.10.028.
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2): 185-229.DOI: 10.1124/pr.56.2.6.
Shokoohinia Y, Hosseinzadeh L, Moieni-Arya M, Mostafaie A, Mohammadi-Motlagh HR. Osthole attenuates doxorubicin-induced apoptosis in PC12 cells through inhibition of mitochondrial dysfunction and ROS production. Biomed Res Int. 2014;2014:156848,1-7.DOI: 10.1155/2014/156848.
Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G. Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol. 2011;49(5):1102-1109.DOI: 10.1016/j.fct.2011.01.021.
Hosseinzadeh L, Soheili S, Ghiasvand N, Ahmadi F, Shokoohnia Y. Fatty acid mixtures from Nigella sativa protects PC12 cells from oxidative stress and apoptosis induced by doxorubicin. Pharm Sci. 2018;24:15-22.DOI: 10.15171/PS.2018.04.
Mojarrab M, Mehrabi M, Ahmadi F, Hosseinzadeh L. Protective effects of fractions from Artemisia biennis hydro-ethanolic extract against doxorubicin-induced oxidative stress and apoptosis in PC12 cells. Iran J Basic Med Sci. 2016;19(5):503-510.DOI: 10.22038/ijbms.2016.6935.
Modarresi M, Hajialyani M, Moasefi N, Ahmadi F, Hosseinzadeh L. Evaluation of the cytotoxic and apoptogenic effects of glabridin and its effect on cytotoxicity and apoptosis induced by doxorubicin toward cancerous cells. Adv Pharm Bull. 2019;9(3):481-489.DOI: 10.15171/apb.2019.057.
Jalilian F, Moieni-Arya M, Hosseinzadeh L, Shokoohinia Y. Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin. Res Pharm Sci. 2021;17(1):12-21.DOI: 10.4103/1735-5362.329922.
Modarresi M, Manoochehri Y, Ahmadi F, Hosseinzadeh L. Protective effects of glabridin against cytotoxicity and oxidative stress induced by doxorubicin in PC12 cells. J Rep Pharm Sci. 2017;6(1):1-12.DOI: 10.4103/2322-1232.222609.
Gioti K, Tenta R. Bioactive natural products against prostate cancer: mechanism of action and autophagic/apoptotic molecular pathways. Planta Med. 2015;81(7):543-562.DOI: 10.1055/s-0035-1545845.
Adibi H, Beyhaghi E, Hayati S, Hosseinzadeh L, Amin N. In vitro cytotoxicity and apoptosis inducing evaluation of novel halogenated isatin derivatives. Anticancer Agents Med Chem. 2022;22(13):2439-2447.DOI: 10.2174/1871520622666220119091642.
Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol. 2020;13(3):265-285.DOI: 10.1080/17512433.2020.1738218.
Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, et al. BID, BIM, and PUMA are essential for activation of the BAX-and BAK-dependent cell death program. Science. 2010;330(6009):1390-1393.DOI: 10.1126/science.1190217.
Lin LT, Tai CJ, Chang SP, Chen JL, Wu SJ, Lin CC. Cinnamaldehyde-induced apoptosis in human hepatoma PLC/PRF/5 cells involves the mitochondrial death pathway and is sensitive to inhibition by cyclosporin A and z-VAD-fmk. Anticancer Agents Med Chem. 2013;13(10):1565-1574.DOI: 10.2174/18715206113139990144.
Wu SJ, Ng LT, Lin CC. Cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and MAPK pathway. Life Sci. 2005;77(8):938-951.DOI: 10.1016/j.lfs.2005.02.005.
Kim TW. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol Sin. 2022;43(3):712-723.DOI: 10.1038/s41401-021-00672-x.
Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, et al. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett. 2003;196(2):143-152.DOI: 10.1016/s0304-3835(03)00238-6.
Xi J, Yun M, Lee D, Park MN, Kim EO, Sohn EJ, et al. Cinnamaldehyde derivative (CB-PIC) sensitizes chemo-resistant cancer cells to drug-induced apoptosis via suppression of MDR1 and its upstream STAT3 and AKT signalling. Cell Physiol Biochem. 2015;35(5):1821-1830.DOI: 10.1159/000373993.
Lee HS, Kim SY, Lee CH, Ahn YJ. Cytotoxic and mutagenic effects of Cinnamomum cassia bark-derived materials. J Microbiol Biotechnol. 2004;14(6):1176–1181.
Wu SJ, Ng LT. MAPK inhibitors and pifithrin-alpha block cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells. Food Chem Toxicol. 2007;45(12):2446-2453.DOI.: 10.1016/j.fct.2007.05.032.
Yu C, Liu SL, Qi MH, Zou X. Cinnamaldehyde/chemotherapeutic agents interaction and drug-metabolizing genes in colorectal cancer. Mol Med Rep. 2014;9(2):669-676.DOI: 10.3892/mmr.2013.1830.
Ranjitkar S, Zhang D, Sun F, Salman S, He W, Ventikanarayanan K, et al. Cytotoxic effects on cancerous and non-cancerous cells of trans-cinnamaldehyde, carvacrol, and eugenol. Sci Rep. 2021;11(1):16281,1-10.DOI: 10.1038/s41598-021-95394-9.
Zhang W, Lei W, Shen F, Wang M, Li L, Chang J. Cinnamaldehyde induces apoptosis and enhances anti-colorectal cancer activity via covalent binding to HSPD1. Phytother Res. 2023;1-10.DOI: 10.1002/ptr.7840.
Singh R, Koppikar SJ, Paul P, Gilda S, Paradkar AR, Kaul-Ghanekar R. Comparative analysis of cytotoxic effect of aqueous cinnamon extract from Cinnamomum zeylanicum bark with commercial cinnamaldehyde on various cell lines. Pharm Biol, 2009;47(12):1174-1179.DOI: 10.3109/13880200903019242.
Moss DK, Betin VM, Malesinski SD, Lane JD. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci. 2006;119(11):2362-2374.DOI: 10.1242/jcs.02959.
Uren RT, Iyer S, Kluck RM. Pore formation by dimeric Bak and Bax: an unusual pore? Philos Trans R Soc Lond B Biol Sci. 2017;372(1726):20160218,1-9.DOI: 10.1098/rstb.2016.0218.
Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 2011;1807(6):735-745.DOI: 10.1016/j.bbabio.2011.03.010.
Mochizuki H, Goto K, Mori H, Mizuno Y. Histochemical detection of apoptosis in Parkinson's disease. J Neurol Sci. 1996;137(2):120-123.DOI: 10.1016/0022-510x(95)00336-z.
Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res. 2002;511(2):145-178.DOI: 10.1016/s1383-5742(02)00009-1.
Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994;269(49):30761-30764.PMID: 7983002.
Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al. Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell. 1995;81(5):801-809.DOI: 10.1016/0092-8674(95)90541-3.
Han L, Mei J, Ma J, Wang F, Gu Z, Li J, et al. Cinnamaldehyde induces endogenous apoptosis of the prostate cancer-associated fibroblasts via interfering the glutathione-associated mitochondria function. Med Oncol. 2020;37(10):91,1-11.DOI: 10.1007/s12032-020-01417-2.
Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009;46(8):497-510.DOI: 10.1136/jmg.2009.066944.
Nakamura H, Takada K. Reactive oxygen species in cancer: current findings and future directions. Cancer Sci. 2021;112(10):3945-3952.DOI: 10.1111/cas.15068.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.