Anticancer and bioactivity effect of the AraA-IL13 fusion protein on the glioblastoma cell line

Rezvan Mehrab , Hamid Sedighian, Fattah Sotoodehnejadnematalahi, Raheleh Halabian, Abbas Ali Imanifooladi

Abstract


Background and purpose: Glioblastoma (GBM) is an aggressive and malignant brain cancer with the highest mortality and low survival rates. To discover a more specific and efficient treatment for GBM, we synthesized and examined the cytotoxic effect of arazyme-interleukin-13 (Ara-IL13) fusion protein on GBM cells.

Experimental approach: At first, the araA-IL13 chimeric gene in the pET28a (+) vector was designed and synthesized. After transformation into Escherichia coli BL21 (DE3), the chimeric gene was verified by colony polymerase chain reaction. Expression optimization and purification of the AraA-IL13 fusion protein was performed and subsequently evaluated by 10% SDS-PAGE. The protein was purified and concentrated using the Amicon® Ultra-15 centrifugal filter unit. The presence of AraA-IL13 was investigated by the western blotting technique. The enzyme was evaluated for proteolytic activity after purification on skim milk agar. The cytotoxic effect of the AraA-IL13 fusion protein was evaluated by MTT assay on U251 and T98G cell lines in vitro.

Findings/Results: The chimeric protein had no proteolytic activity on skim milk agar despite high expression. Furthermore, no cytotoxic effect of this fusion protein (up to 400 μg/mL) was observed on the U251 and T98G cell lines.

Conclusion and implications: The lack of proteolytic activity and cytotoxic effect of AraA-IL13 may be due to the disruption of the three-dimensional structure of the protein or the large structure of the arazyme coupled with the ligand and the lack of proper folding of the arazyme to make the active site of the enzyme inaccessible.

 

 


Keywords


Arazyme; Cytotoxic effect; Glioblastoma; IL-13; Targeted therapy; Protease.

Full Text:

PDF

References


Yin W, Wang J, Jiang L, Kang YJ. Cancer and stem cells. Exp Biol Med (Maywood). 2021;246(16):1791-1801.DOI: 10.1177/15353702211005390.

Abadi B, Ahmadi-Zeidabadi M, Dini L, Vergallo C. Stem cell-based therapy treating glioblastoma multiforme. Hematol Oncol Stem Cell Ther. 2021;14(1):1-15.DOI: 10.1016/j.hemonc.2020.08.001.

Chen L, Qin D, Guo X, Wang Q, Li J. Putting proteomics in to immunotherapy for glioblastoma. Front Immunol. 2021;12:593255,1-12.DOI: 10.3389/fimmu.2021.593255.

Virtuoso A, Giovannoni R, De Luca C, Gargano F, Cerasuolo M, Maggio N, et al. The glioblastoma microenvironment: morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence. Int J Mol Sci. 2021;22(7):3301,1-20.DOI: 10.3390/ijms22073301.

Sibuh BZ, Gahtori R, Al-Dayan N, Pant K, Farasati Far B, Malik AA, et al. Emerging trends in immunotoxin targeting cancer stem cells. Toxicol In Vitro. 2022; 83:105417.DOI: 10.1016/j.tiv.2022.105417.

Dhillon S. Moxetumomab pasudotox: first global approval. Drugs. 2018;78(16):1763-1767.DOI: 10.1007/s40265-018-1000-9.

Ataee MH, Mirhosseini SA, Mirnejad R, Rezaie E, Mahmoodzadeh Hosseini H, Amani J. Design of two immunotoxins based rovalpituzumab antibody against DLL3 receptor; a promising potential opportunity. Res Pharm Sci. 2022;17(4):428-444.DOI: 10.4103/1735-5362.350243.

Heiat M, Hashemi Yeganeh H, Alavian SM, Rezaie E. Immunotoxins immunotherapy against hepatocellular carcinoma: a promising prospect. Toxins. 2021;13(10):719,1-18.DOI: 10.3390/toxins13100719.

Ma R, Taphoorn MJB, Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry. 2021;92(10):1103-1111.DOI: 10.1136/jnnp-2020-325334.

Mikhael E, Kourie HR. Targeting glioblastoma: from dream to reality. Biomark Med. 2021;15(6):385-388.DOI: 10.2217/bmm-2021-0113.

Huang B, Li X, Li Y, Zhang J, Zong Z, Zhang H. Current immunotherapies for glioblastoma multiforme. Front Immunol. 2020;11:603911,1-12.DOI: 10.3389/fimmu.2020.603911.

Amet N, Lee HF, Shen WC. Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharm Res. 2009;26(3):523-528.DOI: 10.1007/s11095-008-9767-0.

Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062-4072.DOI: 10.1158/1078-0432.Ccr-15-0428.

Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM, et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the cintredekin besudotox intraparenchymal study group. J Clin Oncol. 2007;25(7):837-844.DOI: 10.1200/jco.2006.08.1117.

Mazor R, Onda M, Pastan I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol Rev. 2016;270(1):152-164.DOI: 10.1111/imr.12390.

Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and immunotherapeutic targets in glioblastoma. World Neurosurg. 2017;102:494-506.DOI: 10.1016/j.wneu.2017.03.011.

Kim JH, Lee HN, Bae SK, Shin DH, Ku BH, Park HY, et al. Development of a novel denture care agent with highly active enzyme, arazyme. BMC Oral Health. 2021;21(1):365,1-9.DOI: 10.1186/s12903-021-01733-7.

Kwak J, Lee K, Shin DH, Maeng JS, Park DS, Oh HW, et al. Biochemical and genetic characterization of arazyme, an extracellular metalloprotease produced from Serratia proteamaculans HY-3. J Microbiol Biotechnol. 2007;17(5):761-768.PMID: 18051297.

Pereira FV, Melo ACL, de Melo FM, Mourao-Sa D, Silva P, Berzaghi R, et al. TLR4-mediated immunomodulatory properties of the bacterial metalloprotease arazyme in preclinical tumor models. Oncoimmunology. 2016;5(7):e1178420,1-6.DOI: 10.1080/2162402x.2016.1178420.

Amjadi G, Parivar K, Mousavi SF, Imani Fooladi AA. Effect of metalloprotease arazyme on the expression of MMP2 and MMP9 genes in metastasis of colon and ovarian cancer cell lines. Thrita. 2020;8(2):e100004.DOI: 10.5812/thrita.100004.

Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. ARA-linker-TGFαL3: a novel chimera protein to target breast cancer cells. Med Oncol. 2021;38(8):96,1-15.DOI: 10.1007/s12032-021-01546-2.

Knudson KM, Hwang S, McCann MS, Joshi BH, Husain SR, Puri RK. Recent advances in IL-13Rα2-directed cancer immunotherapy. Front Immunol. 2022;13,1-10.DOI: 10.3389/fimmu.2022.878365.

Mehrab R, Sedighian H, Sotoodehnejadnematalahi F, Halabian R, Imani Fooladi AA. A comparative study of the arazyme-based fusion proteins with various ligands for more effective targeting cancer therapy: an in-silico analysis. Res Pharm Sci. 2023;18(2):159-176.DOI: 10.4103/1735-5362.367795.

Patel DK, Menon DV, Patel DH, Dave G. Linkers: a synergistic way for the synthesis of chimeric proteins. Protein Expr Purif. 2021;191:106012.DOI: 10.1016/j.pep.2021.106012.

Mohseni Z, Sedighian H, Halabian R, Amani J, Behzadi E, Imani Fooladi AA. Potent in vitro antitumor activity of B-subunit of Shiga toxin conjugated to the diphtheria toxin against breast cancer. Eur J Pharmacol. 2021;899:174057,1-11.DOI: 10.1016/j.ejphar.2021.174057.

Rezaie E, Bidmeshki Pour A, Amani J, Mahmoodzadeh Hosseini H. Bioinformatics predictions, expression, purification and structural analysis of the PE38KDEL-scfv immunotoxin against EPHA2 receptor. Int J Pept Res Ther. 2020;26(2):979-996.DOI: 10.1007/s10989-019-09901-8.

Rahmani F, Imani Fooladi AA, Ajoudanifar H, Soleimani NA. In silico and experimental methods for designing a potent anticancer arazyme-herceptin fusion protein in HER2-positive breast cancer. J Mol Model. 2023;29(5):160.DOI: 10.1007/s00894-023-05562-z.

Araghi A, Hashemi S, Akhavan Sepahi A, Faramarzi M, Amin M. Purification and study of anti-cancer effects of Serratia marcescens serralysin. Iran J Microbiol. 2019;11:320-327.DOI: 10.18502/ijm.v11i4.1470.

Zhang X, Shuai Y, Tao H, Li C, He L. Novel method for the quantitative analysis of protease activity: the casein plate method and its applications. ACS Omega. 2021;6(5):3675-3680.DOI: 10.1021/acsomega.0c05192.

Bhardwaj R, Suzuki A, Leland P, Joshi BH, Puri RK. Identification of a novel role of IL-13Rα2 in human glioblastoma multiforme: interleukin-13 mediates signal transduction through AP-1 pathway. J Transl Med. 2018;16:369,1-13.DOI: 10.1186/s12967-018-1746-6.

Sharma P, Roberts C, Herpai D, Fokt ID, Priebe W, Debinski W. Drug conjugates for targeting Eph receptors in glioblastoma. Pharmaceuticals (Basel). 2020;13(4):77,1-17.DOI: 10.3390/ph13040077.

Sattiraju A, Solingapuram Sai KK, Xuan A, Pandya DN, Almaguel FG, Wadas TJ, et al. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget. 2017;8(26):42997-43007.DOI: 10.18632/oncotarget.17792.

Sanaei M, Kavoosi F. The effect of valproic acid on intrinsic, extrinsic, and JAK/STAT pathways in neuroblastoma and glioblastoma cell lines. Res Pharm Sci. 2022;17(4):392-409.DOI: 10.4103/1735-5362.350240.

Amjadi G, Parivar K, Fazlollah Mousavi SF, Imani Fooladi AA. Anti-cancer effects of recombinant arazyme from Serratia proteomaculans. J Buon. 2020;25(1):531-542.PMID: 32277680.

Hamin Neto YAA, de Oliveira LCG, de Oliveira JR, Juliano MA, Juliano L, Arantes EC, et al. Analysis of the specificity and biochemical characterization of metalloproteases isolated from Eupenicillium javanicum using fluorescence resonance energy transfer peptides. Front Microbiol. 2017;7:2141,1-13.DOI: 10.3389/fmicb.2016.02141.

Goleij Z, Mahmoodzadeh Hosseini H, Sedighian H, Behzadi E, Halabian R, Sorouri R, Imani Fooladi AA. Breast cancer targeted/ therapeutic with double and triple fusion Immunotoxins. J Steroid Biochem Mol Biol. 2020;200:105651.DOI: 10.1016/j.jsbmb.2020.105651.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.