A bioinformatics approach of specificity protein transcription factors in head and neck squamous cell carcinoma

Adel Rezvani Sichani , Ziba Rezvani Sichani, Behnaz Yazdani, Mehdi Azizmohammad Looha, Hajar Sirous

Abstract


Background and purpose: The seventh most common type of cancer with increasing diagnosis rates around the world is head and neck squamous cell carcinoma (HNSCC). Specificity proteins (SPs) have been known for their role in the regulation of cellular division, growth, and apoptotic pathways in various cancers. In this work, we analyzed the expression levels of SPs in HNSCC to assess their diagnostic and prognostic biomarker potential.

Experimental approach: Differential gene expression and correlation analysis methods were used to determine the top dysregulated genes in HNSCC. Functional enrichment and protein-protein interaction analyses were done with the DAVID database and Cytoscape software to understand their function and biological processes. Receiver operating test, logistic regression, and Cox regression analyses were performed to check SP genes’ diagnostic and prognostic potential.

Findings/Results: SP1 (LogFC = -0.27, P = 0.0013) and SP2 (LogFC = -0.20, P = 0.0019) genes were upregulated in HNSCC samples, while SP8 (LogFC = 2.57, P < 0.001) and SP9 (LogFC = 2.57, P < 0.001) genes were downregulated in cancer samples. A moderate positive correlation was observed among the expression levels of SP1, SP2, and SP3 genes. The SP8 and SP9 genes with AUC values of 0.79 and 0.75 demonstrated diagnostic potential which increased to 0.84 when both genes were assessed by logistic regression test. Also, the SP1 gene held a marginally significant prognostic potential.

Conclusion and implications: Our findings clarify the potential of SP transcription factors as candidate diagnostic and prognostic biomarkers for early screening and treatment of HNSCC.


Keywords


Head and neck squamous cell carcinoma; Specificity protein; SP1; TCGA.

Full Text:

PDF

References


Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1): 92,1-49. DOI: 10.1038/s41572-020-00224-3.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. DOI: 10.3322/caac.21660.

Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends and risk factors. Br Dent J. 2022;233(9):780-786.DOI: 10.1038/s41415-022-5166-x.

Safe S, Abdelrahim M. SP transcription factor family and its role in cancer. Eur J Cancer. 2005;41(16):2438-2448.DOI: 10.1016/j.ejca.2005.08.006.

Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol. 2002;195(1-2):27-38.DOI: 10.1016/s0303-7207(02)00221-6.

Black AR, Black JD, Azizkhan‐Clifford J. Sp1 and krüppel‐like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol. 2001;188(2):143-160.DOI: 10.1002/jcp.1111.

Beishline K, Azizkhan‐Clifford J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015;282(2):224-258.

DOI: 10.1111/febs.13148.

Liu Y, Zhong X, Li W, Brattain MG, Banerji SS. The role of Sp1 in the differential expression of transforming growth factor-β receptor type II in human breast adenocarcinoma MCF-7 cells. J Biol Chem. 2000;275(16):12231-12236. DOI: 10.1074/jbc.275.16.12231.

Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91(3): 386-396.DOI: 10.1016/j.mayocp.2015.12.017.

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71,1-11.DOI: 10.1093/nar/gkv1507.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140. DOI: 10.1093/bioinformatics/btp616.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-15550.DOI: 10.1073/pnas.0506580102.

Yazdani B, Sirous H. Expression analysis of HIF-3α as a potent prognostic biomarker in various types of human cancers: a case of meta-analysis. Res Pharm Sci. 2022;17(5):508-526.DOI: 10.4103/1735-5362.355210.

Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci. 2023;18(4):413-429.DOI: 10.4103/1735-5362.378088.

Harris MA, Clark J, Ireland A, Lomax L, Ashburner M, Foulger R, et al. The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32:D258-D261. DOI: 10.1093/nar/gkh036.

Touzet H, Perriquet O. CARNAC: folding families of related RNAs. Nucleic Acids Res. 2004;32(suppl_2):W142-W145.DOI: 10.1093/nar/gkh415.

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-W175.DOI: 10.1093/nar/gkm415.

Mering Cv, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258-261.DOI: 10.1093/nar/gkg034.

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D612. DOI: 10.1093/nar/gkaa1074.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.DOI: 10.1101/gr.1239303.

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2(10):2366-2382.DOI: 10.1038/nprot.2007.324.

Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67-72.DOI: 10.1016/j.biosystems.2014.11.005.

Metz CE. Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems. J Am Coll Radiol. 2006;3(6):413-422. DOI: 10.1016/j.jacr.2006.02.021.

Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. Peer J Comput Sci. 2016;2:e67,1-20. DOI: 10.7717/peerj-cs.67.

Benítez-Parejo N, del Águila MMR, Pérez-Vicente S. Survival analysis and Cox regression. Allergol Immunopathol. 2011;39(6):362-373.DOI: 10.1016/j.aller.2011.07.007.

Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-1160. DOI: 10.1126/science.1208130.

Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1(1):53-65.DOI: 10.1016/j.trecan.2015.07.001.

Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting transcription factors for cancer treatment. Molecules. 2018;23(6):1479,1-51.DOI: 10.3390/molecules23061479.

Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695-1709.DOI: 10.1016/S0140-6736(08)60728-X.

Lee C, Kim JS, Waldman T. PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res. 2004;64(19):6906-6914.DOI: 10.1158/0008-5472.CAN-04-1767.

Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcription factors: bring in the family. Genomics. 2005;85(5):551-556. DOI: 10.1016/j.ygeno.2005.01.005.

Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity protein transcription factors and cancer: opportunities for drug development. Cancer Prev Res. 2018;11(7):371-382. DOI: 10.1158/1940-6207.CAPR-17-0407.

Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D. Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17(7):1648-1652. DOI: 10.1158/1055-9965.EPI-07-2791.

Gao Y, Gan K, Liu K, Xu B, Chen M. SP1 expression and the clinicopathological features of tumors: a meta-analysis and bioinformatics analysis. Pathol Oncol Res. 2021;27:581998,1-12. DOI: 10.3389/pore.2021.581998.

Dong Q, Cai N, Tao T, Zhang R, Yan W, Li R, et al. An axis involving SNAI1, microRNA-128 and SP1 modulates glioma progression. PLoS One. 2014;9(6):e98651,1-11.

DOI: 10.1371/journal.pone.0098651.

Maurer GD, Leupold JH, Schewe DM, Biller T, Kates RE, Hornung HM, et al. Analysis of specific transcriptional regulators as early predictors of independent prognostic relevance in resected colorectal cancer. Clin Cancer Res. 2007;13(4): 1123-1132. DOI: 10.1158/1078-0432.CCR-06-1668.

Hu X, Cui C, Sun T, Wang W. Associations between ADIPOQ rs2241766 SNP and breast cancer risk: a systematic review and a meta-analysis. Genes Environ. 2021;43:48,1-9. DOI: 10.1186/s41021-021-00221-2.

Morris LGT, Sikora AG, Patel SG, Hayes RB, Ganly I. Second primary cancers after an index head and neck cancer: subsite-specific trends in the era of human papillomavirus-associated oropharyngeal cancer. J Clin Oncol. 2011;29(6):739-746.DOI: 10.1200/JCO.2010.31.8311.

Westra WH. The changing face of head and neck cancer in the 21st century: the impact of HPV on the epidemiology and pathology of oral cancer. Head Neck Pathol. 2009;3(1):78-81.DOI: 10.1007/s12105-009-0100-y.

Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 2003;9(17):6371-6380. PMID: 14695137.

Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, et al. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res. 2004;10(12): 4109-4117. DOI: 10.1158/1078-0432.CCR-03-0628.

Wang LW, Li Q, Hua ZL, Zhou F, Keping X, Daoyan W, et al. Expression of transcription factor Sp1 in human gastric cancer tissue and its correlation with prognosis. Zhonghua Zhong Liu Za Zhi. 2007;29(2):107-111. PMID: 17645844.

Jutooru I, Guthrie AS, Chadalapaka G, Pathi S, Kim K, Burghardt R, et al. Mechanism of action of phenethylisothiocyanate and other reactive oxygen species-inducing anticancer agents. Mol Cell Biol. 2014;34(13):2382-2395.DOI: 10.1128/MCB.01602-13.

Safe S. Specificity proteins (Sp) and cancer. Int J Mol Sci. 2023;24(6):5164,1-22. DOI: 10.3390/ijms24065164.

Zhang B, Wang H, Guo Z, Zhang X. A panel of transcription factors identified by data mining can predict the prognosis of head and neck squamous cell carcinoma. Cancer Cell Int. 2019;19:297,1-10.DOI: 10.1186/s12935-019-1024-6.

Jin Y, Qin X. Comprehensive analysis of transcriptome data for identifying biomarkers and therapeutic targets in head and neck squamous cell carcinoma. Ann Transl Med. 2020;8(6): 282,1-17.DOI: 10.21037/atm.2020.03.30.

Yan L, Zhan C, Wu J, Wang S. Expression profile analysis of head and neck squamous cell carcinomas using data from The Cancer Genome Atlas. Mol Med Rep. 2016;13(5):4259-4265.DOI: 10.3892/mmr.2016.5054


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.