The protective effect of Thai rice bran on N-acetyl-ρ-aminophen-induced hepatotoxicity in mice

Pitchaporn Wanyo , Charinya So-In

Abstract


Background and purpose: N-acetyl-ρ-aminophen (APAP) is a widely used medication with analgesic and antipyretic characteristics. High paracetamol doses can damage the liver. Thai-pigmented rice may treat numerous liver disorders due to its antioxidant, anti-inflammatory, and glutathione-restoring capabilities. This study aimed to evaluate the phenolic components in three Thai rice bran extracts and their antioxidant and hepatoprotective activities in an animal model.

Experimental approach: Fifty male mice were randomly assigned to the control and APAP studies. Each study was divided into 5 groups (n = 5) treated with distilled water, Hom Mali, Hang-Ngok, and Hom Nil (HN) rice compared with N-acetylcysteine with/without 60 mg/kg/day of APAP orally once a day for two weeks. Blood and liver sampling were collected for analysis.

Findings/Results: HN rice bran exhibited higher contents of total phenolic, total flavonoid, total anthocyanin, ferric-reducing antioxidant, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities than Hom Mali and Hang-Ngok. Anthocyanin was merely detected in HN. Following APAP administration, mice exhibited significant increases in hepatic enzymes including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)), and malondialdehyde (MDA), but lower levels of antioxidant enzymes and glutathione profiles. Amongst the three cultivars, HN rice was the only compound that decreased MDA, ALT, AST, TNF-α, and IL-6 while increasing antioxidant enzyme activity such as superoxide dismutase, catalase, and glutathione peroxidase that was very close to that of N-acetylcysteine groups.

Conclusion and implications: Given the hepatoprotective and antioxidant properties, HN has the potential to be used as a health supplement.

 

 


Keywords


Anti-inflammation; Antioxidant; N-acetyl-ρ-aminophen; Thai rice cultivars.

Full Text:

PDF

References


Freo U, Ruocco C, Valerio A, Scagnol I, Nisoli E. Paracetamol: A review of guideline recommendations. J Clin Med. 2021;10(15):3420, 1-22.DOI: 10.3390/jcm10153420.

Reid O, Ngo J, Lalic S, Su E, Elliott RA. Paracetamol dosing in hospital and on discharge for older people who are frail or have low body weight. Br J Clin Pharmacol. 2022;88(10): 4565-4572.DOI: 10.1111/bcp.15394.

Oksuz E, Yasar S, Erten R, Arihan O, Oto G. Comparison of effects of high and low dose paracetamol treatment and toxicity on brain and liver in rats. North Clin Istanb. 2020;7(6):541-550.DOI: 10.14744/nci.2020.54926.

Baker BH, Rafikian EE, Hamblin PB, Strait MD, Yang M, Pearson BL. Sex-specific neurobehavioral and prefrontal cortex gene expression alterations following developmental acetaminophen exposure in mice. Neurobiol Dis. 2023;177:105970,1-27.DOI: 10.1016/j.nbd.2022.105970.

Lalert L, Tantarungsee N, Chotipinit T, Ji-au W, Srikiatkhachorn A, Maneesri-le Grand S. Long-term paracetamol treatment impairs cognitive function and brain-derived neurotrophic factor in adult rat brain. Sci Pharm. 2023;91:11,1-12.DOI: 10.3390/scipharm91010011.

Coelho AM, Queiroz IF, Perucci LO, Souza MO, Lima WG, Talvani A, et al. Piperine as therapeutic agent in paracetamol-induced hepatotoxicity in mice. Pharmaceutics. 2022;14(9):1800,1-15.DOI: 10.3390/pharmaceutics14091800.

Cai X, Cai H, Wang J, Yang Q, Guan J, Deng J, et al. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options. J Zhejiang Univ Sci B. 2022;23(4):265-285.DOI: 10.1631/jzus.B2100977.

Salem GA, Shaban A, Diab HA, Elsaghayer WA, Mjedib MD, Hnesh AM, et al. Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats. Biomed Pharmacother. 2018;104:366-374.DOI: 10.1016/j.biopha.2018.05.049.

Chiew AL, Reith D, Pomerleau A, Wong A, Isoardi KZ, Soderstrom J, et al. Updated guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med. J. Aust. 2020;212(4):175-183.DOI: 10.5694/mja2.50428.

Chowdhury A, Nabila J, Temitope IA, Wang S. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol. Res. 2020;161:105102,1-39.DOI: 10.1016/j.phrs.2020.105102.

Pattananandecha T, Apichai S, Sirilun S, Julsrigival J, Sawangrat K, Ogata F, et al. Anthocyanin profile, antioxidant, anti-inflammatory, and antimicrobial against foodborne pathogens activities of purple rice cultivars in Northern Thailand. Molecules. 2021;26(17):5234,1-12.DOI: 10.3390/molecules26175234.

Summpunn P, Panpipat W, Manurakchinakorn S, Bhoopong P, Cheong LZ, Chaijan M. Comparative analysis of antioxidant compounds and antioxidative properties of Thai indigenous rice: Effects of rice variety and processing condition. Molecules. 2022; 27(16):5180,1-16.DOI: 10.3390/molecules27165180.

Melini V, Acquistucci R. Health-promoting compounds in pigmented Thai and wild rice. Foods. 2017;6(1):9,1-13.DOI: 10.3390/foods6010009.

Itsarawisut J, Kanjanawanishkul K. Neural network-based classification of germinated hang rice using image processing. IETE Tech Rev. 2019;36(4):375-381.DOI: 10.1080/02564602.2018.1487806.

Thiranusornkij L, Thamnarathip P, Chandrachai A, Kuakpetoon D, Adisakwattana S. Physicochemical properties of Hom Nil (Oryza sativa) rice flour as gluten free ingredient in bread. Foods. 2018;7(10):159,1-13.DOI: 10.3390/foods7100159.

Wanyo P, Kaewseejan N, Meeso N, Siriamornpun S. Bioactive compounds and antioxidant properties of different solvent extracts derived from Thai rice by-products. Appl Biol Chem. 2016;59(3):373-384.DOI: 10.1007/s13765-016-0173-8.

Duangkhamchan W, Siriamornpun S. Quality attributes and anthocyanin content of rice coated by Purple-corn cob extract as affected by coating conditions. Food Bioprod. 2015;96:171-179.DOI: 10.1016/j.fbp.2015.07.012.

Williams CD, Bajt ML, Farhood A, Jaeschke H. Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int. 2010;30(9):1280-1292.DOI: 10.1111/j.1478-3231.2010.02284.x.

Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays. J. Med. Sci. 2017;24(5):101-105. DOI: 10.21315/mjms2017.24.5.11.

Du Z, Ma Z, Lai S, Ding Q, Hu Z, Yang W, et al. Atractylenolide I ameliorates acetaminophen-induced acute liver injury via the TLR4/MAPKs/NF-κB signaling pathways. Front Pharmacol. 2022;13:797499,1-8.DOI: 10.3389/fphar.2022.797499.

Xu Y, Xia Y, Liu Q, Jing X, Tang Q, Zhang J, et al. Glutaredoxin-1 alleviates acetaminophen-induced liver injury by decreasing its toxic metabolites. J. Pharm. Anal. 2023;13(12):1548-1561.DOI: 10.1016/j.jpha.2023.08.004.

Kaewsorn K, Phanomsophon T, Maichoon P, Pokhrel DR, Pornchaloempong P, Krusong W, et al. Modeling textural properties of cooked germinated brown rice using the near-Infrared spectra of whole grain. Foods. 2023;12(24):4516,1-18.DOI: 10.3390/foods12244516.

Phattayakorn K, Pajanyor P, Wongtecha S, Prommakool A, Saveboworn W. Effect of germination on total phenolic content and antioxidant properties of ‘Hang’ rice. Int Food Res J. 2016;23(1):406-409.

Kurek JM, Król E, Krejpcio Z. Steviol glycosides supplementation affects lipid metabolism in high-fat fed STZ-induced diabetic rats. Nutrients. 2020 30;13(1):112,1-19. DOI: 10.3390/nu13010112.

Kongchian A, Keawboonleart N, Boonrak T, Lookyee S, Buasri K, Surongkul N, et al. Anti-Hyperlipidemia and anti-obesity properties of Garcinia atroviridis and Camellia sinensis extracts in high-fat diet mice. Walailak J Sci Technol. 2020;17(10):1126-1138.DOI: 10.48048/wjst.2020.10717.

Hosack T, Damry D, Biswas S. Drug-induced liver injury: a comprehensive review. Therap. Adv. Gastroenterol. 2023;16:1-13.DOI: 10.1177/17562848231163410.

Kuna L, Bozic I, Kizivat T, Bojanic K, Mrso M, Kralj E, et al. Models of drug induced liver injury (DILI) - current issues and future perspectives. Curr. Drug Metab. 2018;19(10):830-838.DOI: 10.2174/1389200219666180523095355.

Navarro VJ, Khan I, Björnsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology. 2017;65(1):363-373.DOI: 10.1002/hep.28813.

Tujios SR, Lee WM. Acute liver failure induced by idiosyncratic reaction to drugs: Challenges in diagnosis and therapy. Liver Int. 2018;38(1):6-14.DOI: 10.1111/liv.13535.

So-In C, Sunthamala N. The effects of mulberry (Morus alba Linn.) leaf supplementation on growth performance, blood parameter, and antioxidant status of broiler chickens under high stocking density. Vet World. 2022;15(11):2715-2724. DOI: 10.14202/vetworld.2022.2715-2724.

So-In C, Sunthamala N. Treatment efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata extracts in Staphylococcus aureus-induced rabbit dermatitis model. Vet. World. 2022;15(1):188-197.DOI: 10.14202/vetworld.2022.188-197.

So-In C, Sunthamala N. Influence of goat management systems on hematological, oxidative stress profiles, and parasitic gastrointestinal infection. Vet World. 2023;16(3):483-490.DOI: 10.14202/vetworld.2023.483-490.

Williams LAD, Connar AO, Latore L, Dennis O, Ringer S, Whittaker JA, et al. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) Bovine Serum Albumin (BSA) is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals in the early stages of the drug discovery process. West Indian Med J. 2008;57(4):327-331.PMID: 19566010.

Settapramote N, Utama-Ang N, Petiwathayakorn T, Settakorn K, Svasti S, Srichairatanakool S, et al. Antioxidant effects of anthocyanin-rich riceberry™ rice flour prepared using dielectric barrier discharge plasma technology on iron-induced oxidative stress in mice. Molecules. 2021;26(16):4978,1-16.DOI: 10.3390/molecules26164978.

Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic potential of plants and plant derived phytochemicals against acetaminophen-induced liver injury. Int J Mol Sci. 2018;19(12):3776.DOI: 10.3390/ijms19123776.

Yamuangmorn S, Prom-U-Thai C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants (Basel). 2021;10(6):833,1-21.DOI: 10.3390/antiox10060833.

Nabil-Adam A, Ashour ML, Shreadah MA. The hepatoprotective candidates by synergistic formula of marine and terrestrial against Acetaminophen toxicity using in-vitro, in-vivo, and in silico screening approach. Saudi J Biol Sci. 2023;30(4):103607,1-21. DOI: 10.1016/j.sjbs.2023.103607.

Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: molecular mechanism and treatments from natural products. Front Pharmacol. 2023;14:1122632,1-12.DOI: 10.3389/fphar.2023.1122632.

Yang T, Wang H, Wang X, Li J, Jiang L. The dual role of innate immune response in acetaminophen-induced liver injury. Biology (Basel). 2022;11(7):1057,1-19.DOI: 10.3390/biology11071057.

Mannino G, Gentile C, Ertani A, Serio G, Bertea CM. Anthocyanins: Biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—A review. Agriculture. 2021;11(3):212,1-24.DOI: 10.3390/agriculture11030212.

Jaeschke H, Ramachandran A. Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. React Oxyg Species (Apex). 2018;5(15):145-158.PMCID: PMC5903282.

Marto N, Morello J, Antunes AMM, Azeredo S, Monteiro EC, Pereira SA. A simple method to measure sulfonation in man using paracetamol as probe drug. Sci Rep. 2021;11(1):9036,1-10.DOI: 10.1038/s41598-021-88393-3.

Mrakic-Sposta S, Gussoni M, Montorsi M, Porcelli S, Vezzoli A. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxid Med Cell Longev. 2012;2012:973927,1-10.DOI: 10.1155/2012/973927.

Sun T, Xiao S, Wang M, Xie Q, Zhang L, Gong M, et al. Reactive oxygen species scavenging nanozymes: emerging therapeutics for acute liver injury alleviation. Int J Nanomedicine. 2023;18:7901-7922.DOI: 10.2147/IJN.S435544.

Wang Y, Zhao Y, Wang Z, Sun R, Zou B, Li R, et al. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol. 2021;12:652782,1-13.DOI: 10.3389/fimmu.2021.652782.

Habib S, Shaikh OS. Drug-induced acute liver failure. Clin Liver Dis. 2017;21(1):151-162.DOI: 10.1016/j.cld.2016.08.003.

Wang X, Wu Q, Liu A, Anadon A, Rudiguez JL, Martinez-Larranaga MR, et al. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab Rev. 2017;49:395-437.DOI: 10.1080/03602532.2017.1354014.

Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018;17:274-283. DOI: 10.1016/j.redox.2018.04.019.

Du K, Ramachandran A, Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016;10:148-156.DOI: 10.1016/j.redox.2016.10.001.

Wang J, Li M, Zhang W, Gu A, Dong J, Li J, et al. Protective effect of N-acetylcysteine against oxidative stress induced by zearalenone via mitochondrial apoptosis pathway in SIEC02 cells. Toxins (Basel). 2018;10(10):407,1-17.DOI: 10.3390/toxins10100407.

Tenório MCDS, Graciliano NG, Moura FA, Oliveira ACM, Goulart MOF. N-acetylcysteine (NAC): Impacts on human health. Antioxidants (Basel). 2021;10(6):967.DOI: 10.3390/antiox10060967.

Yarema M, Chopra P, Sivilotti MLA, Johnson D, Nettel-Aguirre A, Bailey B, et al. Anaphylactoid reactions to intravenous N-acetylcysteine during treatment for acetaminophen poisoning. J Med Toxicol. 2018;14(2):120-127.DOI: 10.1007/s13181-018-0653-9.

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057-1073.DOI: 10.2147/JIR.S275595.

Sato S, Nakaji S, Sawada K, Akimoto N, Tateda T, Kaizuka M, et al. Association between reactive oxygen species production in neutrophils and liver fibrosis in the general population. J Clin Biochem Nutr. 2023;73(3):214-220.DOI: 10.3164/jcbn.23-46.

Yu Y, Wu Y, Yan HZ, Xia ZR, Wen W, Liu DY, et al. Rosmarinic acid ameliorates acetaminophen-induced acute liver injury in mice via RACK1/TNF-α mediated antioxidant effect. Pharm Biol. 2021;59(1):1286-1293.DOI: 10.1080/13880209.2021.1974059.

Hwang SN, Kim JC, Bhuiyan MIH, Kim JY, Yang JS, Yoon SH, et al. Black rice (Oryza sativa L., Poaceae) extract reduces hippocampal neuronal cell death induced by transient global cerebral ischemia in mice. Exp. Neurobiol. 2018;27(2):129-138.DOI: 10.5607/en.2018.27.2.129.

Palungwachira P, Tancharoen S, Phruksaniyom C, Klungsaeng S, Srichan R, Kikuchi K, et al. Antioxidant and anti-inflammatory properties of anthocyanins extracted from Oryza sativa L. in primary dermal fibroblasts. Oxid Med Cell Longev. 2019;2019;2089817,1-18.DOI: 10.1155/2019/2089817.

Zaidi SHR, Zakari SA, Zhao Q, Khan AR, Shah JM, Cheng F. Anthocyanin accumulation in black kernel mutant rice and its contribution to ROS detoxification in response to high temperature at the filling stage. Antioxidants (Basel). 2019;8(11):510,1-14.DOI: 10.3390/antiox8110510.

Li X, Wang X, Wang K, Yang X, Liu X, Chen J, et al. Black rice anthocyanin extract enhances the antioxidant capacity in PC12 cells and improves the lifespan by activating IIS pathway in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol. 2023;265:109533,1-41.DOI: 10.1016/j.cbpc.2022.109533.

Mapoung S, Semmarath W, Arjsri P, Thippraphan P, Srisawad K, Umsumarng S, et al. Comparative analysis of bioactive-phytochemical characteristics, antioxidants activities, and anti-inflammatory properties of selected black rice germ and bran (Oryza sativa L.) varieties. Eur Food Res Technol. 2023;249(2):451-464. DOI: 10.1007/s00217-022-04129-1.

Papackova Z, Heczkova M, Dankova H, Sticova E, Lodererova A, Bartonova L, et al. Silymarin prevents acetaminophen-induced hepatotoxicity in mice. PLoS One. 2018;13:e0191353,1-20.DOI: 10.1371/journal.pone.0191353.

Semmarath W, Mapoung S, Umsumarng S, Arjsri P, Srisawad K, Thippraphan P, et al. Cyanidin-3-O-glucoside and peonidin-3-o-glucoside-rich fraction of black rice germ and bran suppresses inflammatory responses from SARS-CoV-2 spike glycoprotein S1-induction in vitro in A549 lung cells and THP-1 macrophages via inhibition of the NLRP3 inflammasome Pathway. Nutrients. 2022;14(13):2738,1-22. DOI: 10.3390/nu14132738.

Thepthanee C, Liu CC, Yu HS, Huang HS, Yen CH, Li YH, et al. Evaluation of phytochemical contents and in vitro antioxidant, anti-inflammatory, and anticancer activities of black rice leaf (Oryza sativa L.) extract and its fractions. Foods. 2021;10(12): 2987,1-20.DOI: 10.3390/foods10122987.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.