Effects of extracts and manna of Echinops cephalotes on impaired cognitive function induced by scopolamine in mice

Giti Sadeghi , Masoud Sadeghi Dinani, Mohammad Rabbani

Abstract


Background and purpose: Alzheimer’s disease (AD) is a neurodegenerative disease specified by chronic and irreversible destruction of neurons. This study aimed to evaluate the effects of different extracts                         (aqueous, hydroalcoholic, hexane, and ethyl acetate) and manna of Echinops cephalotes (EC) on impaired cognitive function induced by scopolamine in mice. EC is shown to have anti-cholinesterase-butyrylcholinesterase activities.

Experimental approach: In this study, aqueous and hydroalcoholic extracts, hexane and ethyl acetate fractions of EC (25, 50, 100 mg/kg, i.p.), and the manna (25, 50, 100 mg/kg, gavage) were administered for 14 days alongside scopolamine (0.7 mg/kg, i.p.). Rivastigmine (reference drug) was administered for 2 weeks i.p. Mice were tested for their memory function using two behavioral models, object recognition test (ORT) and passive avoidance test (PAT).

Findings/Results: Administration of scopolamine significantly impaired memory function in both behavioral models. In the PAT model, all extracts at 50 and 100 mg/kg significantly reversed the effect of memory destruction caused by scopolamine. At a lower dose of 25 mg/kg, however, none of the extracts were able to significantly change the step-through latency time. In the ORT model, however, administration of all extracts at 50 and 100 mg/kg, significantly increased the recognition index. Only the manna and the aqueous extract at 25 mg/kg were able to reverse scopolamine-induced memory impairment.

Conclusions and implications: These results suggest that all forms of EC extracts improve memory impairment induced by scopolamine comparably to rivastigmine. Whether the effects are sustained over a longer period remains to be tested in future work.

 


Keywords


Alzheimer, Echinops cephalotes, Memory; Object recognition; Passive avoidance; Scopolamine.

Full Text:

PDF

References


Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 2018;7:F1000 Faculty Rev-1161,1-9.DOI: 10.12688/f1000research.14506.1.

Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2,1-7.DOI: 10.1186/s40035-018-0107-y.

Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci. 2010;13(7):812-818.DOI: 10.1038/nn.2583.

Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans. 2002;30(4):552-557.DOI: 10.1042/bst0300552.

Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders--a survey of ethnobotanical literature. J Ethnopharmacol. 2007;113(3):363-381.DOI: 10.1016/j.jep.2007.07.016.

Gargouri B, Carstensen J, Bhatia HS, Huell M, Dietz GPH, Fiebich BL. Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells. Int J Phytomedicine. 2018;15(44):45-55.DOI: 10.1016/j.phymed.2018.04.009.

Jagtap SR, Pol SL, Bhosale SS, Kadam VJ. Memory enhancing activity of ginger (Zingiber officinale), its treatments in dementia and Alzheimer's disease. Int J Res Appl Sci Biotechnol. 2022;9(3):73-84.DOI: 10.31033/ijrasb.9.3.14.

Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y. Mechanistic role of boswellic acids in Alzheimer's disease: emphasis on anti-inflammatory properties. Biomed Pharmacother. 2021;144:112250,1-11.DOI: 10.1016/j.biopha.2021.112250.

Chu LW. Alzheimer's disease: early diagnosis and treatment. Hong Kong Med J. 2012;18(3):228-237.PMID: 22665688.

Perry E, Howes MJR. Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther. 2011;17(6):683-698.DOI: 10.1111/j.1755-5949. 2010.00202.x.

Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702-716.DOI: 10.1016/S1474-4422(10)70119-8.

Khadim EJ, Abdulrasool AA, Awad ZJ. Phytochemical investigation of alkaloids in the iraqi Echinops heterophyllus (compositae). Iraqi J Pharm Sci. 2014;23(1):26-34.DOI: 10.31351/vol23iss1pp26-34.

Eram S, Ahmad M, Arshad S. Experimental evaluation of Echinops echinatus as an effective hepatoprotective. J Sci Res. 2013;18;8(39):1919-1923. DOI: 10.5897/SRE2012.0766.

Bitew H, Hymete A. The genus echinops: phytochemistry and biological activities: a review. Front Pharmacol. 2019;10:1234,1-29.DOI: 10.3389/fphar.2019.01234.

Darikvand F, Ghavami M, Honarvar M. Determination of the phenolic content in iranian Trehala manna and evaluation of their antioxidant effects. Evid Based Complement Altern Med. 2021;2021:8570162,1-8.

DOI: 10.1155/2021/8570162.

Aslam PMF, Santosh J, Jyotiram S, Manojkumar P. Pharmacognostical, phytochemical and pharmacological of Echinops echinatus Roxb: A comprehensive review. World J Pharm Res. 2015;3(8):1626-1632.DOI: 10.25258/phyto.10.4.4.

Konrath EL, Passos CD, Klein-Júnior LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. J Pharm Pharmacol. 2013;65(12):1701-1725.DOI: 10.1111/jphp.12090.

Jamila N, Khan N, Hwang IM, Khan SN, Atlas A. Elemental analysis and bioactivities of Echinops echinatus Roxb. (globe thistle) via spectroscopic techniques. Pak J Bot. 2020;52(1):121-128.DOI: 10.30848/PJB2020-1(3).

Heshmati S, Madani M, Amjad L. Study of inhibitory effect of Echinops cephalotes on Candida Spp. Isolated from vulvovaginal candidiasis patients in Isfahan. Zahedan J Res Med Sci. 2016;18(6):e7355,1-10.DOI: 10.17795/zjrms-7355.

Lee HJ, Yoon YS, Lee SJ. Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 2018;9(7):712,1-12.DOI: 10.1038/s41419-018-0749-9.

Xiao M, Yao C, Liu F, Xiang W, Zuo Y, Feng K, et al. Sialic acid ameliorates cognitive deficits by reducing amyloid deposition, nerve fiber production, and neuronal apoptosis in a mice model of Alzheimer’s disease. NeuroSci. 2022;3(1):28-40.DOI: 10.3390/neurosci3010002.

Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8): 1307-1350.DOI: 10.1016/j.neubiorev.2010.04.001.

Ionita R, Postu PA, Beppe GJ, Mihasan M, Petre BA, Hancianu M, et al. Cognitive-enhancing and antioxidant activities of the aqueous extract from Markhamia tomentosa (Benth.) K. Schum. stem bark in a rat model of scopolamine. Behav Brain Funct. 2017;13(5):1-13.DOI: 10.1186/s12993-017-0123-6.

Harborne JB. Phytochemical methods: a guide to modern techniques of plant analysis. London: Chapman and Hall; 1988.302.

Evans WC. Trease and Evan’s. pharmacognosy. 15th ed. Saunders Publishers, London.2002. 42-44, 221-229, 246-249, 304-306, 331-332, 391-393.

Safavi M, Hosseini-Sharifabad A, Seyed-Yousefi Y, Rabbani M. Protective effects of citicoline and benfotiamine each alone and in combination on streptozotocin-induced memory impairment in mice. Clin Psychopharmacol Neurosci. 2020;18(1):81-92.DOI: 10.9758/cpn.2020.18.1.81.

Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. 2017;126:e55718,1-9.DOI: 10.3791/55718.

Ng YP, Or TCT, Ip NY. Plant alkaloids as drug leads for Alzheimer's disease. Neurochem Int. 2015;89:260-270.DOI: 10.1016/j.neuint.2015.07.018.

Obulesu M, Rao DM. Effect of plant extracts on Alzheimer's disease: An insight into therapeutic avenues. J Neurosci Rural Pract. 2011;2(1):56-61.DOI: 10.4103/0976-3147.80102.

Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT. 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res. 2014;17(3):249-254.DOI: 10.1089/rej.2013.1519.

Pachauri SD, Tota S, Khandelwal K, Verma PRP, Nath C, Hanif K, et al. Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: a behavioral, biochemical and cerebral blood flow study. J Ethnopharmacol. 2012;139(1):34-41.DOI: 10.1016/j.jep.2011.09.057.

Chaudhaery SS, Roy KK, Shakya N, Saxena G, Sammi SR, Nazir A, et al. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J Med Chem. 2010;53(17): 6490-6505.DOI: 10.1021/jm100573q.

Gutierres JM, Carvalho FB, Schetinger MR, Agostinho P, Marisco PC, Vieira JM, et al. Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int J Dev Neurosci. 2014;33:88-97.DOI: 10.1016/j.ijdevneu.2013.12.006.

Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol. 2010;649(1-3):210-217 DOI: 10.1016/j.ejphar.2010.09.001.

Snyder PJ, Bednar MM, Cromer JR, Maruff P. Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimers Dement. 2005;1(2):126-135.DOI: 10.1016/j.jalz.2005.09.004.

Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/ neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol. 2019;14(2): 278-294.DOI:10.1007/s11481-018-9824-3.

Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res. 2011;221(2):389-411.DOI: 10.1016/j.bbr.2010.11.036.

Rahimzadegan M, Soodi M. Comparison of memory impairment and oxidative stress following single or repeated doses administration of scopolamine in rat hippocampus. Basic Clin Neurosci. 2018;9(1):5-14.DOI: 10.29252/NIRP.BCN.9.1.5.

Buresová O, Bures J. Radial maze as a tool for assessing the effect of drugs on the working memory of rats. Psychopharmacology (Berl). 1982;77(3):268-271.DOI:10.1007/BF00464578.

Sambeth A, Riedel WJ, Smits LT, Blokland A. Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol. 2007;572(2-3):151-159.DOI: 10.1016/j.ejphar.2007.06.018.

Cozzolino R, Guaraldi D, Giuliani A, Ghirardi O, Ramacci MT, Angelucci L. Effects of concomitant nicotinic and muscarinic blockade on spatial memory disturbance in rats are purely additive: evidence from the Morris water task. Physiol Behav. 1994;56(1):111-114.DOI:10.1016/0031-9384(94)90267-4.

Chen WN, Yeong KY. Scopolamine, a Toxin-induced experimental model, used for research in Alzheimer's disease. CNS Neurol Disord-Drug Targets. 2020;19(2):85-93.DOI: 10.2174/1871527319666200214104331.

Chen G, Chen P, Tan H, Ma D, Dou F, Feng J, et al. Regulation of the NMDA receptor-mediated synaptic response by acetylcholinesterase inhibitors and its impairment in an animal model of Alzheimer's disease. Neurobiol Aging. 2008;29(12):1795-1804.DOI: 10.1016/j.neurobiolaging.2007.04.023.

Kim JM, Kim DH, Park SJ, Park DH, Jung SY, Kim HJ, et al. The n-butanolic extract of Opuntia ficus-indica var. saboten enhances long-term memory in the passive avoidance task in mice. Prog Neuropsychopharmacol Biol. 2010;34(6):1011-1017.DOI: 10.1016/j.pnpbp.2010.05.015.

Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci. 2009;29(46):14484-14495.DOI: 10.1523/JNEUROSCI.1768-09.2009.

Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9(10):1079-1087.DOI:10.1242/dmm.026120.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.