Carbon nanotubes induce cytotoxicity and apoptosis through increasing protein levels of Bax and ROS in mouse skin fibroblasts

Zahra Nazeri, Vahid Zarezade, Mostafa Jamalan, Maryam Cheraghzadeh, Shirin Azizidoost, Alireza Kheirollah


Background and purpose: Carbon nanotubes (CNTs) are a significant discovery in nanotechnology, with widespread applications in modern technology. However, there are concerns about their potential toxicity, particularly in skin cells. This study aimed to investigate the mechanisms by which CNTs induced cytotoxicity and apoptosis in mouse skin fibroblasts.

Experimental approach: The mice skin fibroblasts were isolated and exposed to two types of CNTs at various concentrations and then analyzed for changes in viability, reactive oxygen species (ROS) production, the levels of Bcl-2-associated X protein (Bax), and lactate production.

Findings/Results: The results demonstrated that CNTs reduced cell viability and increased ROS production in a dose-dependent manner. Additionally, the current study found that CNTs increased the protein levels of Bax, a pro-apoptotic protein, in mouse skin fibroblasts. Furthermore, it was observed a significant decrease in lactate production in cells exposed to CNTs.

Conclusion and implications: The findings concluded that CNTs have the potential to be toxic substances for skin fibroblasts, which serve as the body's first line of defense. This is evidenced by their ability to increase the production of ROS and the protein levels of Bax, as well as reduce lactic acid levels. As lactic acid has been reported to have beneficial effects on skin collagen production, further studies are needed to fully understand the impact of carbon nanotube exposure on human skin health.

Full Text:



Coccini T, Manzo L, Roda E. Safety evaluation of engineered nanomaterials for health risk assessment: an experimental tiered testing approach using pristine and functionalized carbon nanotubes. ISRN Toxicol. 2013;2013:825427,1-13.DOI: 10.1155/2013/825427.

Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nano particles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res pharm sci. 2018;13(4):288-303.DOI: 10.4103/1735-5362.235156.

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908-931.DOI: 10.1016/j.arabjc.2017.05.011.

Varshney K. Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res Gen Sci. 2014;2(4):660-677.DOI: 10.1080/09205063.2021.1980985.

Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106(3):1105-1136.DOI: 10.1021/cr050569o.

Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res. 2003;33(1):419-501.DOI: 10.1146/annurev.matsci.33.012802.100255.

Novais GB, Dias MA, Santana AAM, Batista TC, Marques MN, Melo CR, et al. Isoflavones-functionalized single-walled and multi-walled carbon nanotubes: synthesis and characterization of new nanoarchitetonics for biomedical uses. J Mol Struct. 2023;1294:136351,1-12.DOI: 10.1016/j.molstruc.2023.136351.

Nan N, DeVallance D, Xie X, Wang J. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. J Compos Mater. 2016;50(9):1161-1168.DOI: 10.1177/0021998315589770.

Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev. 2011;63(14-15):1340-1351.DOI: 10.1016/j.addr.2011.06.013.

Hussain SM, Braydich‐Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, et al. Toxicity evaluation for safe use of nanomaterials: recent achievements and technic al challenges. Adv Mater. 2009;21(16):1549-1559.DOI: 10.1002/adma.200801395.

Saweres-Argüelles C, Ramirez-Novillo I, Vergara-Barberan M, Carrasco-Correa EJ, Lerma-García MJ, Simó-Alfonso EF. Skin absorption of inorganic nanoparticles and their toxicity: A review. Eur J Pharm Biopharm. 2023;182:128-140.DOI: 10.1016/j.ejpb.2022.12.010.

Peate I. The skin: largest organ of the body. British Journal of Healthcare Assistants. 2021;15(9): 446-451.DOI: 10.12968/bjha.2021.15.9.446.

Lawton S. Anatomy and function of the skin, part 1. Nurs Times. 2006;102(31):26-27.DOI: 10.1016/B978-0-12-802926-8.00001-X.

Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell. 2021;184(15):3852-3872.DOI: 10.1016/j.cell.2021.06.024.

Halper J, Kjaer M, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Bio. 2014;802:31-47.DOI: 10.1007/978-94-007-7893-1_3.

Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol. 2015;72(2):310-322.DOI: 10.1016/j.yrtph.2015.05.005.

Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119(8):4881-4985.DOI: 10.1021/acs.chemrev.8b00626.

Makhdoumi P, Karimi H, Khazaei M. Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem Res Toxicol. 2020;33(10):2503-2514.DOI: 10.1021/acs.chemrestox.9b00438.

Zhou X, Jin W, Ma J. Lung inflammation perturbation by engineered nanoparticles. Front Bioeng Biotechnol. 2023;11:1199230,1-10.DOI: 10.3389/fbioe.2023.1199230.

Zarei H, Ghourchian H, Eskandari K, Zeinali M. Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe₃O₄ as a platform for electrochemical immunoassay. Anal Biochem. 2012;421(2):446-453.DOI: 10.1016/j.ab.2011.12.031.

Song YS, Lee BY, Hwang ES. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech Ageing Dev. 2005;126(5):580-590.DOI: 10.1016/j.mad.2004.11.008.

Kay EJ, Koulouras G, Zanivan S. Regulation of extracellular matrix production in activated fibroblasts: roles of amino acid metabolism in collagen synthesis. Front Oncol. 2021;11:719922,1-11.DOI: 10.3389/fonc.2021.719922.

Palmer BC, Phelan-Dickenson SJ, DeLouise LA. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Part Fibre Toxicol. 2019;16(1):3,1-15.DOI: 10.1186/s12989-018-0285-x.

Francis AP, Devasena T. Toxicity of carbon nanotubes: a review. Toxicol Ind Health. 2018;34(3):200-210.DOI: 10.1177/0748233717747472.

Zhao X, Liu R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int. 2012;40:244-255.DOI: 10.1016/j.envint.2011.12.003.

Shen CX, Zhang QF, Li J, Bi FC, Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97(10):1602-1609.DOI: 10.3732/ajb.1000073.

Patlolla A, Patlolla B, Tchounwou P. Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol Cell Biochem. 2010;338(1-2):225-232.DOI: 10.1007/s11010-009-0356-2.

Liu HL, Zhang YL, Yang N, Zhang YX, Liu XQ, Li CG, et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis. 2011;2(5):e159,1-7.DOI: 10.1038/cddis.2011.27.

Bhattacharya K, Andón FT, El-Sayed R, Fadeel B. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev. 2013;65(15):2087-2097.DOI: 10.1016/j.addr.2013.05.012.

Cavallo D, Fanizza C, Ursini CL, Casciardi S, Paba E, Ciervo A, et al. Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol. 2012;32(6):454-464.DOI: 10.1002/jat.2711.

Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977-2992.DOI: 10.1016/j.bbamcr.2016.09.012.

Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, et al. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 2014;88(11):1939-1964.DOI: 10.1007/s00204-014-1356-x.

Horie M, Tabei Y. Role of oxidative stress in nanoparticles toxicity. Free Radic Res. 2021;55(4):331-342.DOI: 10.1080/10715762.2020.1859108.

Yan X, Yang W, Shao Z, Yang S, Liu X. Triggering of apoptosis in osteosarcoma cells by graphene/single-walled carbon nanotube hybrids via the ROS-mediated mitochondrial pathway. Biomed Mater Res A. 2017;105(2):443-453.DOI: 10.1002/jbm.a.35918.

Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351(1-2):41-58.DOI: 10.1007/s11010-010-0709-x.

Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue eng. 2010;2010:218142,1-18.DOI: 10.4061/2010/218142.

Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Correction: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7(1):372,1-22.DOI: 10.1038/s41392-022-01206-5.

Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater. 2014;10(10):4425-4436.DOI: 10.1016/j.actbio.2014.06.023.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.