Determination of the anticancer activity of standardized extract of Centella asiatica (ECa 233) on cell growth and metastatic behavior in oral cancer cells

Suwisit Manmuan , Sukannika Tubtimsri, Nattaya Chaothanaphat, Nipatha Issaro, Mayuree H. Tantisira, Ponwit Manmuan


Background and purpose: The anticancer drugs used for oral cancer treatment present many disadvantages, such as low solubility, low permeability, and poor bioavailability. However, the anticancer activity of ECa 233 has not been widely studied. Therefore, the anticancer activity of ECa 233 was investigated in this study.

Experimental approach: MTT assay was carried out to determine cell viability. Characterizations of cell apoptosis were monitored using DAPI and FDA staining and Hoechst 33258 and AO staining. Confirmation of the apoptosis-induced KON cells was done using annexin V-FITC staining, and ROS generation was determined by DCFDA staining. Cell death and the cell cycle arrest activity of ECa 233 were demonstrated by a flow cytometer. The anti-migration and anti-invasion properties of ECa 233 were examined. The anti-proliferative of ECa 233 was investigated. Cellular uptake of ECa 233 was measured by TEER values. The pharmacokinetics of ECa 233 were estimated using the pkCSM web server.

Findings/Results: ECa 233 decreased the KON cell viability. Morphological analysis showed the KON cells’ loss of cell stability and structure, disorganized nucleus and cytoplasm, and induced cell death. ECa 233 acted as a cell cycle arrest in the G0/G1 phase and reduced the migration and invasion ability in KON cells. TEER values significantly increased in KON cells, which decreased cell colony and multicellular spheroid formations. The pharmacokinetic profiles of the main components are of interest for future usage.

Conclusion and implication: ECa 233 can be used as an alternative therapy as well as a medicinal plant selected for sensitizing oral cancer cells to chemotherapy.


Cell apoptosis; Cell invasion; Cell migration; Cytotoxicity; ECa 233; Oral cancer.

Full Text:



Charly MM, Jean-Paul SI, Ngbolua KTN, Hippolyte SNT, Erick KN, Alifi PB, et al. Review of the literature on oral cancer: epidemiology, management and evidence-based traditional medicine treatment. Annu Res Rev Biol. 2022;37(6):15-27.DOI: 10.9734/arrb/2022/v37i630512.

Kumar M, Nanavati R, Modi T, Dobariya C. Oral cancer: etiology and risk factors: a review. J Cancer Res Ther. 2016;12(2):458-463.DOI: 10.4103/0973-1482.186696.

Warnakulasuriya S, Kerr AR. Oral cancer screening: past, present, and future. J Dent Res. 2021;100(12):1313-1320.DOI: 10.1177/00220345211014795.

Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8(9):11884-11894.PMCID: PMC4637760.

Cristaldi M, Mauceri R, Di Fede O, Giuliana G, Campisi G, Panzarella V. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives. Front Physiol. 2019;10:1476,1-12.DOI: 10.3389/fphys.2019.01476.

Mascitti M, Orsini G, Tosco V, Monterubbianesi R, Balercia A, Putignano A, et al. An overview on current non-invasive diagnostic devices in oral oncology. Front Physiol. 2018;9:1510,1-8.DOI: 10.3389/fphys.2018.01510.

Sha J, Bai Y, Ngo H, Okui T, Kanno T. Overview of evidence-based chemotherapy for oral cancer: focus on drug resistance related to the epithelial-mesenchymal transition. Biomolecules. 2021;11(6):893,1-23.DOI: 10.3390/biom11060893.

Zhang M, Liang J, Yang Y, Liang H, Jia H, Li D. Current trends of targeted drug delivery for oral cancer therapy. Front Bioeng Biotechnol. 2020;8:618931,1-11.DOI: 10.3389/fbioe.2020.618931.

Kinghorn AD, Chin YW, Swanson SM. Discovery of natural product anticancer agents from biodiverse organisms. Curr Opin Drug Discov Devel. 2009;12(2):189-196. PMCID: PMC2877274.

Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect. 2021;11(1):5-13.DOI: 10.1007/s13659-020-00293-7.

Ferreira AS, Macedo C, Silva AM, Delerue-Matos C, Costa P, Rodrigues F. Natural products for the prevention and treatment of oral mucositis-a review. Int J Mol Sci. 2022;23(8):4385,1-31.DOI: 10.3390/ijms23084385.

Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23(8):1616-1622.DOI: 10.1200/JCO.2005.10.036.

Thomas C, Gustafsson JA. The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer. 2011;11(8):597-608.DOI: 10.1038/nrc3093.

Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. Explor Target Antitumor Ther. 2021;2:385-400.DOI: 10.37349/etat.2021.00052.

Ishida H, Wada K, Masuda T, Okura M, Kohama K, Sano Y, et al. Critical role of estrogen receptor on anoikis and invasion of squamous cell carcinoma. Cancer Sci. 2007;98(5):636-643.DOI: 10.1111/j.1349-7006.2007.00437.x.

Kim MJ, Lee JH, Kim YK, Myoung H, Yun PY. The role of tamoxifen in combination with cisplatin on oral squamous cell carcinoma cell lines. Cancer Lett. 2007;245(1-2):284-292.DOI: 10.1016/j.canlet.2006.01.017.

Egloff AM, Rothstein ME, Seethala R, Siegfried JM, Grandis JR, Stabile LP. Cross-talk between estrogen receptor and epidermal growth factor receptor in head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15(21):6529-6540.DOI: 10.1158/1078-0432.09-0862.

Chang YL, Hsu YK, Wu TF, Huang CM, Liou LY, Chiu YW, et al. Regulation of estrogen receptor alpha function in oral squamous cell carcinoma cells by FAK signaling. Endocr Relat Cancer. 2014;21(4):555-565.DOI: 10.1530/ERC-14-0102.

Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A. The Centella asiatica juice effects on DNA damage, apoptosis and gene expression in hepatocellular carcinoma (HCC). BMC Complement Altern Med. 2014;14:32,1-7.DOI: 10.1186/1472-6882-14-32.

Rotpenpian N, Arayapisit T, Roumwong A, Pakaprot N, Tantisira M, Wanasuntronwong A. A standardized extract of Centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J Appl Oral Sci. 2021;29:e20210329, 1-8.DOI: 10.1590/1678-7757-2021-0329.

Teerapattarakan N, Benya-Aphikul H, Tansawat R, Wanakhachornkrai O, Tantisira MH, Rodsiri R. Neuroprotective effect of a standardized extract of Centella asiatica ECa233 in rotenone-induced parkinsonism rats. Phytomedicine. 2018;15(44): 65-73.DOI: 10.1016/j.phymed.2018.04.028.

Pittella F, Dutra RC, Junior DD, Lopes MT, Barbosa NR. Antioxidant and cytotoxic activities of Centella asiatica (L) Urb. Int J Mol Sci. 2009;10(9): 3713-3721.DOI: 10.3390/ijms10093713.

Wanasuntronwong A, Tantisira MH, Tantisira B, Watanabe H. Anxiolytic effects of standardized extract of Centella asiatica (ECa 233) after chronic immobilization stress in mice. J Ethnopharmacol. 2012;143(2):579-585.DOI: 10.1016/j.jep.2012.07.010.

Wanasuntronwong A, Wanakhachornkrai O, Phongphanphanee P, Isa T, Tantisira B, Tantisira MH. Modulation of neuronal activity on intercalated neurons of amygdala might underlie anxiolytic activity of a standardized extract of Centella asiatica ECa233. Evid Based Complement Alternat Med. 2018;2018:3853147,1-8.DOI: 10.1155/2018/3853147.

Boondam Y, Songvut P, Tantisira MH, Tapechum S, Tilokskulchai K, Pakaprot N. Inverted U-shaped response of a standardized extract of Centella asiatica (ECa 233) on memory enhancement. Sci Rep. 2019;9(1):8404:1-11.DOI: 10.1038/s41598-019-44867-z.

Boondam Y, Tantisira MH, Tilokskulchai K, Tapechum S, Pakaprot N. Acute enhancing effect of a standardized extract of Centella asiatica (ECa 233) on synaptic plasticity: an investigation via hippocampal long-term potentiation. Pharm Biol. 2021;59(1):365-372.DOI: 10.1080/13880209.2021.1893348.

Moolsap F, Tanasawet S, Tantisira MH, Hutamekalin P, Tipmanee V, Sukketsiri W. Standardized extract of Centella asiatica ECa 233 inhibits lipopolysaccharide-induced cytokine release in skin keratinocytes by suppressing ERK1/2 pathways. Asian Pac J Trop Biomed. 2020;10(6):273-280.DOI: 10.4103/2221-1691.283941.

Anukunwithaya T, Tantisira MH, Shimada T, Sai Y, Khemawoot P. Multiple oral dosing pharmacokinetics of standardized extract of Centella asiatica ECa 233 and its inductive effect on efflux transporters in rats. Planta Med Int Open. 2017;4:e66-e73.DOI: 10.1055/s-0043-114669.

Anukunwithaya T, Tantisira MH, Tantisira B, Khemawoot P. Pharmacokinetics of a standardized extract of Centella asiatica ECa 233 in rats. Planta Med. 2017;83(8):710-717.DOI: 10.1055/s-0042-122344.

Wang S, Yang M, Li R, Bai J. Current advances in noninvasive methods for the diagnosis of oral squamous cell carcinoma: a review. Eur J Med Res. 2023;28(53):1-13.DOI: 10.1186/s40001-022-00916-4.

Liu SA, Tsai WC, Wong YK, Lin JC, Poon CK, Chao SY, et al, et al. Nutritional factors and survival of patients with oral cancer. Head Neck. 2006;28(11):998-1007.DOI: 10.1002/hed.20461.

Gonzalez-Moles MA, Aguilar-Ruiz M, Ramos-Garcia P. Challenges in the early diagnosis of oral cancer, evidence gaps and strategies for improvement: a scoping review of systematic reviews. Cancers. 2022;14(19):4967,1-30.DOI: 10.3390/cancers14194967.

Varela-Centelles P. Early diagnosis and diagnostic delay in oral cancer. Cancers. 2022;14(7):1758,1-3.DOI: 10.3390/cancers14071758.

Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect.2021;11(1):5-13.DOI: 10.1007/s13659-020-00293-7.

Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, et al. Targeting cancer signaling pathways by natural products: exploring promising anti-cancer agents. Biomed Pharmacother. 2022;150:113054,1-12.DOI: 10.1016/j.biopha.2022.113054.

Orhan IE. Centella Asiatica (l.) urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complementary Altern Med. 2012;2012:946259,1-8DOI: 10.1155/2012/946259.

Sukketsiri W, Tanasawet S, Moolsap F, Tantisira MH, Hutamekalin P, Tipmanee V. ECa 233 suppresses LPS-induced proinflammatory responses in macrophages via suppressing ERK1/2, p38 MAPK and Akt pathways. Biol Pharm Bull. 2019;42(8):1358-1365.DOI: 10.1248/bpb.b19-00248.

Songvut P, Chariyavilaskul P, Tantisira MH, Khemawoot P. Safety and pharmacokinetics of standardized extract of Centella asiatica (ECa 233) capsules in healthy Thai volunteers: a phase 1 clinical study. Planta Med. 2019;85(6):483-490.DOI: 10.1055/a-0835-6671.

Manmuan S, Manmuan P, Yoykaew P, Thuetong P, Asipong P, Riantong N, et al. Evaluation of standardized extract of Centella asiatica on cell viability and repressive cancer migration in metastatic colorectal cancer cells in vitro. Walailak J Scie. 2021;18(5):1-18.DOI: 10.48048/wjst.2021.9016.

Singh V, Khurana A, Navik U, Allawadhi P, Bharani KK, Weiskirchen R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Sci. 2022;4,15:1-25.

DOI: 10.3390/sci4020015.

Fitzgerald MC, O'Halloran PJ, Connolly NMC, Murphy BM. Targeting the apoptosis pathway to treat tumours of the paediatric nervous system. Cell Death Dis. 2022;13(5),460:1-12.DOI: 10.1038/s41419-022-04900-y.

Hanahan D, Weinberg RA Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.DOI: 10.1016/j.cell.2011.02.013.

Chantree P, Na-Bangchang K, Martviset P. Anticancer activity of fucoidan via apoptosis and cell cycle arrest on cholangiocarcinoma cell. Asian Pac J Cancer Prev. 2021;22(1):209-217.DOI: 10.31557/APJCP.2021.22.1.209.

Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MI. Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies. Curr Genomics. 2017;18(2):106-131.DOI: 10.2174/1389202917666160808125645.

Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315-2319.DOI: 10.1038/nprot.2006.339.

Katz D, Ito E, Lau KS, Mocanu JD, Bastianutto C, Schimmer AD, et al. Increased efficiency for performing colony formation assays in 96-well plates: novel applications to combination therapies and high-throughput screening. Biotechniques. 2018;44(2):ix-xiv,1-6.DOI: 10.2144/000112757.

Braselmann H, Michna A, Hess J, Unger K. CFAssay: statistical analysis of the colony formation assay. Radiat Oncol J. 2015;10:223,1-6.DOI: 10.1186/s13014-015-0529-y.

Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer. 2021;124(1):102-114.DOI: 10.1038/s41416-020-01149-0.

Wu JS, Jiang J, Chen BJ, Wang K, Tang YL, Liang XH. Plasticity of cancer cell invasion: patterns and mechanisms. Transl Oncol. 2021;14(1):100899,1-9.DOI: 10.1016/j.tranon.2020.100899.

Yingchun L, Huihan W, Rong Z, Guojun Z, Ying Y, Zhuogang L. Antitumor activity of asiaticoside against multiple myeloma drug-resistant cancer cells is mediated by autophagy induction, activation of effector caspases, and inhibition of cell migration, invasion, and STAT-3 signaling pathway. Med Sci Monit. 2019;25:1355-1361.DOI: 10.12659/MSM.913397.

Han AR, Lee S, Han S, Lee YJ, Kim JB, Seo EK, et al. Triterpenoids from the leaves of Centella asiatica inhibit ionizing radiation-induced migration and invasion of human lung cancer cells. Evid Based Complementary Altern Med. 2020;2020: 3683460,1-7.DOI: 10.1155/2020/3683460.

Doll C, Bestendonk C, Kreutzer K, Neumann K, Pohrt A, Trzpis I, et al. Prognostic significance of estrogen receptor alpha in oral squamous cell carcinoma. Cancers. 2021;13(22):5763,1-13.DOI: 10.3390/cancers13225763.

Takei RA, Tomihara K, Yamazaki M, Moniruzzaman R, Heshiki W, Sekido K, et al. Protumor role of estrogen receptor expression in oral squamous cell carcinoma cells. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(5):549-565.DOI: 10.1016/j.oooo.2021.04.006.

Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347-1360.DOI: 10.1517/14712598.2012.707181.

Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface. 2017;14(127),20160877:1-15.DOI: 10.1098/rsif.2016.0877.

Songvut P, Chariyavilaskul P, Khemawoot P, Tansawat R. Pharmacokinetics and metabolomics investigation of an orally modified formula of standardized Centella Asiatica extract in healthy volunteers. Sci Rep. 2021;11(1):6850,1-13.

DOI: 10.1038/s41598-021-86267-2


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.