The effects of chitosan-loaded JQ1 nanoparticles on OVCAR-3 cell cycle and apoptosis-related gene expression

Ehsan Masoudi , Mitra Soleimani , Giti Zarinfard, Mansour Homayoun, Mohammad Bakhtiari


Background and purpose: Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQ1 nanoparticles                         (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes.

Experimental approach: Ch-J-NPs were synthesized and characterized. The size and morphology of               Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with               Ch-J-NPs. Then, IC50 was measured using MTT assay. The groups were defined and cells were treated with IC50 concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR.

Findings/Results: IC50 values for Ch-J-NPs were 5.625 µg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs.

Conclusion and implications: Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on      OVCAR-3 cells.


Chitosan; JQ1; Nanoparticles; Ovarian cancer.

Full Text:



Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017;140(11):2451-2460. DOI: 10.1002/ijc.30676.

Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3-14.DOI: 10.1016/j.bpobgyn.2016.08.006.

Peres LC, Cushing-Haugen KL, Köbel M, Harris HR, Berchuck A, Rossing MA, et al. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst. 2019;111(1):60-68.DOI: 10.1093/jnci/djy071.

Homayoun M, Targhi RG, Soleimani M. Anti-proliferative and anti-apoptotic effects of grape seed extract on chemo-resistant OVCAR-3 ovarian cancer cells. Res Pharm Sci. 2020;15(4):390-400. DOI: 10.4103/1735-5362.293517

Homayoun M, Sajedi N, Soleimani M. In vitro evaluation of the pogostone effects on the expression of PTEN and DACT1 tumor suppressor genes, cell cycle, and apoptosis in ovarian cancer cell line. Res Pharm Sci. 2022;17(2):164-175. DOI: 10.4103/1735-5362.335175.

Jafari SM, Nazri A, Shabani M, Balajam NZ, Aghaei M. Galectin-9 induces apoptosis in OVCAR-3 ovarian cancer cell through mitochondrial pathway. Res Pharm Sci. 2018;13(6):557-565. DOI: 10.4103/1735-5362.245967.

Ataei N, Aghaei M, Panjehpour M. The protective role of melatonin in cadmium-induced proliferation of ovarian cancer cells. Res Pharm Sci. 2018;13(2):159-167. DOI: 10.4103/1735-5362.223801.

Shu Y, Zhang H, Li J, Shan Y. LINC00494 promotes ovarian cancer development and progression by modulating NFκB1 and FBXO32. Front Oncol. 2021;10:541410,1-10. DOI: 10.3389/fonc.2020.541410.

Nakanishi K, Toyoshima M, Ueno Y, Suzuki SA retrospective study comparing olaparib and bevacizumab as a maintenance therapy for platinum-sensitive recurrent ovarian cancer: impact on recurrence-free survival in Japanese and Asian populations. Cancers. 2023;15(10):2869,1-9. DOI: 10.3390/cancers15102869.

Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40(11):6009-6015. DOI: 10.21873/anticanres.14622.

Lu W, Lu T, Wei X. Downregulation of DNMT3a expression increases miR-182-induced apoptosis of ovarian cancer through caspase-3 and caspase-9-mediated apoptosis and DNA damage response. Oncol Rep. 2016;36(6):3597-3604. DOI: 10.3892/or.2016.5134.

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381-395. DOI: 10.1038/cr.2011.22.

Cheung KL, Kim C, Zhou MM. The functions of BET proteins in gene transcription of biology and diseases. Front Mol Biosci. 2021;8:728777,1-15. DOI: 10.3389/fmolb.2021.728777.

Jiang G, Deng W, Liu Y, Wang C. General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep. 2020;21(3):1021-1034. DOI: 10.3892/mmr.2020.10927.

Doroshow DB, Eder J, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28(8):1776-1787. DOI: 10.1093/annonc/mdx157.

Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327): 1067-1073. DOI: 10.1038/nature09504.

Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119-1123. DOI: 10.1038/nature09589.

Wroblewski M, Scheller-Wendorff M, Udonta F, Bauer R, Schlichting J, Zhao L, et al. BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells. Haematologica. 2018;103(6):939-948. DOI: 10.3324/haematol.2017.181354.

Hassan R, Tammam SN, El Safy S, Abdel-Halim M, Asimakopoulou A, Weiskirchen R, et al. Prevention of hepatic stellate cell activation using JQ1-and atorvastatin-loaded chitosan nanoparticles as a promising approach in therapy of liver fibrosis. Eur J Pharm Biopharm. 2019;134:96-106. DOI: 10.1016/j.ejpb.2018.11.018.

Mio C, Conzatti K, Baldan F, Allegri L, Sponziello M, Rosignolo F, et al. BET bromodomain inhibitor JQ1 modulates microRNA expression in thyroid cancer cells. Oncol Rep. 2018;39(2):582-588. DOI: 10.3892/or.2017.6152.

Kedaigle AJ, Reidling JC, Lim RG, Adam M, Wu J, Wassie B, et al. Treatment with JQ1, a BET bromodomain inhibitor, is selectively detrimental to R6/2 Huntington’s disease mice. Hum Mol Genet. 2020;29(2):202-215. DOI: 10.1093/hmg/ddz264.

Benito E, Ramachandran B, Schroeder H, Schmidt G, Urbanke H, Burkhardt S, et al. The BET/BRD inhibitor JQ1 improves brain plasticity in WT and APP mice. Transl Psychiatry. 2017;7(9): e1239,1-8. DOI: 10.1038/tp.2017.202.

Qiu H, Jackson AL, Kilgore JE, Zhong Y, Chan LLY, Gehrig PA, et al. JQ1 suppresses tumor growth through downregulating LDHA in ovarian cancer. Oncotarget. 2015;6(9):6915-6930. DOI: 10.18632/oncotarget.3126.

Bagratuni T, Mavrianou N, Gavalas NG, Tzannis K, Arapinis C, Liontos M, et al. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer. 2020;126:125-135. DOI: 10.1016/j.ejca.2019.11.017.

Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905,1-45. DOI: 10.3390/molecules26195905.

Juan A, Noblejas-López M, Bravo I, Arenas-Moreira M, Blasco-Navarro C, Clemente-Casares P, et al. Enhanced antitumoral activity of encapsulated BET inhibitors when combined with PARP inhibitors for the treatment of triple‑negative breast and ovarian cancers. Cancers. 2022;14(18):4474,1-17. DOI: 10.3390/cancers14184474.

Sabit H, Abdel-Hakeem M, Shoala T, Abdel-Ghany S, Abdel-Latif MM, Almulhim J, et al. Nanocarriers: a reliable tool for the delivery of anticancer drugs. Pharmaceutics. 2022;14(8):1566,1-21. DOI: 10.3390/pharmaceutics14081566.

Ahmadi F, Derakhshandeh K, Jalalizadeh A, Mostafaie A, Hosseinzadeh L. Encapsulation in PLGA-PEG enhances 9-nitro-camptothecin cytotoxicity to human ovarian carcinoma cell line through apoptosis pathway. Res Pharm Sci. 2015;10(2):161-168.PMID: 26487893.

Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current advances in chitosan nanoparticles based oral drug delivery for colorectal cancer treatment. Int J Nanomedicine. 2022;17: 3933-3966. DOI: 10.2147/IJN.S375229.

Adhikari HS, Yadav PN. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater. 2018;2018:2952085,1-30. DOI: 10.1155/2018/2952085.

Chang PH, Sekine K, Chao HM, Hsu SH, Chern E. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells. Sci Rep. 2017;7(1):45751,1-14. DOI: 10.1038/srep45751.

Mohammed MA, Syeda JT, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53,1-26. DOI: 10.3390/pharmaceutics9040053.

Tammam SN, Azzazy HM, Breitinger HG, Lamprecht A. Chitosan nanoparticles for nuclear targeting: the effect of nanoparticle size and nuclear localization sequence density. Mol Pharm. 2015;12(12):4277-4289. DOI: 10.1021/acs.molpharmaceut.5b00478.

Chamani M, Maleki Dana P, Chaichian S, Moazzami B, Asemi Z. Chitosan is a potential inhibitor of ovarian cancer: molecular aspects. IUBMB life. 2020;72(4):687-697. DOI: 10.1002/iub.2206.

Babu A, Wang Q, Muralidharan R, Shanker M, Munshi A, Ramesh R. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells. Mol Pharm. 2014;11(8):2720-2733. DOI: 10.1021/mp500259e.

Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target. 2019;27(8):839-852.

DOI: 10.1080/1061186X.2018.1564923.

Bretones G, Delgado MD, León J. Myc and cell cycle control. Biochim Biophys Acta. 2015;1849(5):506-516. DOI: 10.1016/j.bbagrm.2014.03.013.

Gutkin A, Uziel O, Beery E, Nordenberg J, Pinchasi M, Goldvaser H, et al. Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget. 2016;7(37):59173,1-16. DOI: 10.18632/oncotarget.10384.

Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, et al. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int. 2022;22(1):325,1-69. DOI: 10.1186/s12935-022-02747-z.

Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, et al. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22(3):357-368. DOI: 10.1007/s10495-016-1323-5.

Kostova I, Mandal R, Becker S, Strebhardt K. The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev. 2021;40(1):303-318. DOI: 10.1007/s10555-020-09935-1.

Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag Res. 2018;10:403-416. DOI: 10.2147/CMAR.S154608.

Khodapasand E, Jafarzadeh N, Farrokhi F, Kamalidehghan B, Houshmand M. Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iranian Biomed J. 2015;19(2):69-75. DOI: 10.6091/ibj.1366.2015.

Hoang NH, Le Thanh T, Sangpueak R, Treekoon J, Saengchan C, Thepbandit W, et al. Chitosan nanoparticles-based ionic gelation method: a promising candidate for plant disease management. Polymers. 2022;14(4):662,1-28. DOI: 10.3390/polym14040662.

Shu XZ, Zhu KJ. Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. J Microencapsul. 2001;18(2):237-245. DOI: 1080/02652040010000415.

Kim A, Ng WB, Bernt W, Cho NJ. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep. 2019;9(1):263910,1-14. DOI: 1038/s41598-019-38915-x.

İlgü H, Turan T, Şanli-Mohamed G. Preparation, characterization and optimization of chitosan nanoparticles as carrier for immobilization of thermophilic recombinant esterase. J Macromol Sci A. 2011;48(9):713-721. DOI: 10.1080/10601325.2011.596050.

Mahmood S, Mandal UK, Chatterjee B, Taher M. Advanced characterizations of nanoparticles for drug delivery: investigating their properties through the techniques used in their evaluations. Nanotechnol Rev. 2017;6(4):355-372. DOI: 10.1515/ntrev-2016-0050.

Miyaki T, Kawasaki Y, Hosoyamada Y, Amari T, Kinoshita M, Matsuda H, et al. Three-dimensional imaging of podocyte ultrastructure using FE-SEM and FIB-SEM tomography. Cell Tissue Res. 2020;379(2):245-254. DOI: 10.1007/s00441-019-03118-3.

He Y, Zhu Q, Chen M, Huang Q, Wang W, Li Q, et al. The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016;7(43):70803-70821. DOI: 10.18632/oncotarget.12223.

Zhu Q, Jiang L, Wang X. The expression of Duffy antigen receptor for chemokines by epithelial ovarian cancer decreases growth potential. Oncol Lett. 2017;13(6):4302-4306. DOI: 10.3892/ol.2017.5954.

Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524-528.

DOI: 10.1038/nature10334.

Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S, Tang Y, et al; BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res. 2014;20(4):912-925. DOI: 10.1158/1078-0432.CCR-13-2281.

Maggisano V, Celano M, Malivindi R, Barone I, Cosco D, Mio C, et al. Nanoparticles loaded with the BET inhibitor JQ1 block the growth of triple negative breast cancer cells in vitro and in vivo. Cancers. 2019;12(1):91,1-14. DOI: 10.3390/cancers12010091.

Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904-917. DOI: 10.1016/j.cell.2011.08.017.

Lee DH, Qi J, Bradner JE, Said JW, Doan NB, Forscher C, et al. Synergistic effect of JQ 1 and rapamycin for treatment of human osteosarcoma. Int J Cancer. 2015;136(9):2055-2064. DOI: 10.1002/ijc.29269.

Phatak P, Burger A. Telomerase and its potential for therapeutic intervention. British J Oharmacol. 2007;152(7):1003-1011. DOI: 10.1038/sj.bjp.0707374.

Goldvaser H, Gutkin A, Beery E, Edel Y, Nordenberg J, Wolach O, et al. Characterisation of blood-derived exosomal hTERT mRNA secretion in cancer patients: a potential pan-cancer marker. Br J Cancer. 2017;117(3):353-357 DOI: 10.1038/bjc.2017.166.

Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, et al. Direct activation of TERT transcription by c-MYC. Nature genetics. 1999;21(2):220-224. DOI: 10.1038/6010.

Choi M, Cho K, Lee S, Bae Y, Jeong K, Rha S, et al. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene. 2015;34(26):3402-3412.

DOI: 10.1038/onc.2014.270.

Li M, He F, Zhang Z, Xiang Z, Hu D. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J Int Med Res. 2020;48(2):0300060519897508,1-12. DOI: 10.1177/0300060519897508.

Yang W, Cho H, Shin HY, Chung JY, Kang ES, Lee EJ, et al. Accumulation of cytoplasmic Cdk1 is associated with cancer growth and survival rate in epithelial ovarian cancer. Oncotarget. 2016;7(31):49481-49497. DOI: 10.18632/oncotarget.10373.

Turner NC, Neven P, Loibl S, Andre F. Advances in the treatment of advanced oestrogen-receptor-positive breast cancer. Lancet. 2017;389(10087):2403-2414. DOI: 10.1016/S0140-6736(16)32419-9.

Iyengar M, O’Hayer P, Cole A, Sebastian T, Yang K, Coffman L, et al. CDK4/6 inhibition as maintenance and combination therapy for high grade serous ovarian cancer. Oncotarget. 2018;9(21):15658-15672. DOI: 10.18632/oncotarget.24585


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.