Caesalpinia sappan reduces the stemness of breast cancer stem cells involving the elevation of intracellular reactive oxygen species

Riris Istighfari Jenie , Nur Dina Amalina, Adam Hermawan, Meiny Suzery, Agung Putra, Edy Meiyanto


Background and purpose: Breast cancer stem cells (BCSCs) as a kind of tumor cells are able to regenerate themselves, leading to apoptosis resistance and cancer relapse. It was reported that BCSCs contain lower levels of reactive oxygen species (ROS) associated with stemness capability. Caesalpinia sappan has been proposed for its chemopreventive potency against several cancer cells. This study aimed to evaluate the effects of Caesalpinia sappan extract (CSE) on cytotoxicity, apoptosis induction, ROS generation, and stemness markers of MDA-MB-231 and its BCSCs.

Experimental approach: Caesalpinia sappan was extracted under maceration with methanol.                                        Magnetic-activated cell sorting was used to isolate BCSCs based on CD44+ and CD24- cell surface expression. The MTT test was used to assess the cytotoxic effects of CSE on MDA-MB-231 and BCSCs. Moreover,                  flow cytometry was used to examine the cell cycle distribution, apoptosis, ROS level, and CD44/CD24 level. Using qRT-PCR, the gene expression of the stemness markers NANOG, SOX-2, OCT-4, and c-MYC was assessed.

Findings/Results: We found that MDA-MB-231 contains 80% of the BCSCs population, and CSE showed more potent cytotoxicity toward BCSCs than MDA-MB-231. CSE caused apoptosis in MDA-MB-231                     and BCSCs cells by increasing the level of ROS. Furthermore, CSE significantly reduced the MDA-MB-231 stemness marker CD44+/CD24- and the mRNA levels of pluripotent markers of cells in BCSCs.

Conclusion and implications: CSE potentially reduces BCSCs stemness, which may be mediated by the elevation of the ROS levels and reduction of the expression levels of stemness transcription.


Cancer stem cell; CD44; CD24; MDA-MB-231; ROS; Stemness marker.

Full Text:



Crabtree JS, Miele L. Breast cancer stem cells. Biomedicines. 2018;6(3):77,1-14. DOI: 10.3390/biomedicines6030077.

Elbaiomy MA, Akl T, Atwan N, Elsayed AA, Elzaafarany M, Shamaa S. Clinical impact of breast cancer stem cells in metastatic breast cancer patients. J Oncol. 2020; 2020:2561726,1-8. DOI: 10.1155/2020/2561726.

Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25,1–13. DOI: 10.1186/bcr1982.

Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, et al. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother. 2022;147:112616,1-14. DOI: 10.1016/j.biopha.2022.112616.

Nalla LV, Kalia K, Khairnar A. Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol. 2019;107:140–153. DOI: 10.1016/j.biocel.2018.12.017.

Sin WC, Lim CL. Breast cancer stem cells - from origins to targeted therapy. Stem Cell Investig. 2017;4:96,1-8. DOI: 10.21037/sci.2017.11.03.

Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036,1-11. DOI: 10.1155/2012/708036.

Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–1043. DOI: 10.5966/sctm.2015-0048.

Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923,1-16. DOI: 10.1155/2018/5416923.

Schmitt M, Metzger M, Gradl D, Davidson G, Orian-Rousseau V. CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ. 2015;22(4):677–689. DOI: 10.1038/cdd.2014.156.

Jenie RI, Handayani S, Susidarti RA, Udin Z, Meiyanto E. Cytotoxic and antimetastasis effect of ethyl acetate fraction from Caesalpinia sappan L. on MCF-7/HER2 cells. Indones J Cancer Chemoprevention. 2017;8(1):42-50. DOI: 10.14499/indonesianjcanchemoprev8iss1pp42-50.

Tirtanirmala P, Novarina A, Utomo RY, Sugiyanto RN, Jenie RI, Meiyanto E. Cytotoxic and apoptotic-inducing effect of fraction containing brazilein from Caesalpinia sappan L. and cisplatin on T47D cell lines. Indones J Cancer Chemoprevention. 2015;6(3):89-96. DOI: 10.14499/indonesianjcanchemoprev6iss3pp89-96.

Husnaa U, Laksmiani NPL, Susidarti RA, Meiyanto E. Ethyl acetate fraction of Caesalpinia sappan L. enhances cisplatin’s cytotoxicity on HeLa cells via G1 and S arrest through p53 expression. Indones J Cancer Chemoprevention. 2017;8(2):51-60. DOI: 10.14499/indonesianjcanchemoprev8iss2pp51-60.

Handayani S, Susidarti RA, Jenie RI, Meiyanto E. Two active compounds from Caesalpinia sappan L. in combination with cisplatin synergistically induce apoptosis and cell cycle arrest on WiDr cells. Adv Pharm Bull. 2017;7(3):375–380. DOI: 10.15171/apb.2017.045.

Haryanti S, Zulfin UM, Salsabila IA, Wulandari F, Meiyanto E. The cytotoxic and anti-migratory properties of Caesalpinia sappan and Ficus septica, in combination with doxorubicin on 4T1 TNBC cells with nephroprotective potential. Asian Pac J Cancer Prev. 2022;23(2):743–752. DOI: 10.31557/APJCP.2022.23.2.743.

Handayani S, Susidarti RA, Utomo RY, Meiyanto E, Jenie RI. Synergistic cytotoxic and antimigratory effect of brazilein and doxorubicin on HER2-overexpressing cells. Asian Pac J Cancer Prev. 2022;23(8):2623-2632. DOI: 10.31557/APJCP.2022.23.8.2623.

Tanvir EM, Hossen MS, Hossain MF, Afroz R, Gan SH, Khalil MI, et al. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J Food Qual. 2017;2017: 8471785,1-8. DOI: 10.1155/2017/8471785.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65 (1–2):55-63. DOI: 10.1016/0022-1759(83)90303-4.

Putra A, Riwanto I, Putra ST, Wijaya I. Typhonium flagelliforme extract induce apoptosis in breast cancer stem cells by suppressing survivin. J Cancer Res Ther. 2020;16(6):1302-1308. DOI: 10.4103/jcrt.JCRT-85-20.

Suzery M, Cahyono B, Amalina ND. Antiproliferative and apoptosis effect of hyptolide from Hyptis pectinata (L.) poit on human breast cancer cells. J Appl Pharm Sci. 2020;10(2):1-6. DOI: 10.7324/JAPS.2020.102001.

Jenie RI, Amalina ND, Ilmawati GPN, Utomo RY, Ikawati M, Khumaira A, et al. Cell cycle modulation of CHO-K1 cells under genistein treatment correlates with cells senescence, apoptosis and ROS level but in a dose-dependent manner. Adv Pharm Bull. 2019;9(3):453-461. DOI: 10.15171/apb.2019.054.

Mursiti S, Amalina ND, Marianti A. Inhibition of breast cancer cell development using Citrus maxima extract through increasing levels of reactive oxygen species (ROS). J Phys Conf Ser. 2021;1918:052005,1-6. DOI: 10.1088/1742-6596/1918/5/052005.

Fernanda MAHF, Andriani RD, Estulenggani Z, Kusumo GG. Identification and determination of total flavonoids in ethanol extract of old and young Angsana leaves (Pterocarpus indicus Willd.) using visible spectrophotometry. In Proceedings of the 2nd International Conference Postgraduate School (ICPS 2018). 2018; 541-544.DOI: 10.5220/0007546605410544.

Rufai Y, Isah Y, Isyaka MS. Comparative phyto-constituents analysis from the root bark and root core extractives of Cassia ferruginea (Schrad D. C) plant. Sch J Agric Vet Sci. 2016;3(4):275–283. DOI: 10.21276/sjavs.2016.3.4.1.

SulasmiES, Saptasari M, Mawaddah K, Zulfia FA. Tannin identification of 4 species Pterydophyta from Baluran National Park. J Phys Conf Ser. 2019;1241: 012002,1-7. DOI: 10.1088/1742-6596/1241/1/012002.

Putri RS, Putra A, Chodidjah D, Darlan DM, Trisnadi S, Thomas S, et al. Clitorea ternatea flower extract induces platelet-derived growth factor (PDGF) and GPx gene overexpression in ultraviolet (UV) B irradiation-induced collagen loss. Med Glas (Zenica). 2023;20(1):15-21.DOI: 10.17392/1530-22

Pękal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014;7:1776–1782.

DOI: 10.1007/s12161-014-9814-x.

Ayele DT, Akele ML, Melese AT. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022;16(1):30,1-9. DOI: 10.1186/s13065-022-00822-0.

Fattahi S, Zabihi E, Abedian Z, Pourbagher R, Motevalizadeh-Ardekani A, Mostafazadeh A, et al. Total phenolic and flavonoid contents of aqueous extract of Stinging nettle and In Vitro antiproliferative effect on Hela and BT-474 cell lines. Int J Mol Cell Med. 2014; 3(2):102-107. PMID: 25035860.

Chu M, Zheng C, Chen C, Song G, Hu X, Wang ZW. Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol. 2022;85:234-245. DOI: 10.1016/j.semcancer.2021.07.008.

Meiyanto E, Lestari B, Sugiyanto RN, Jenie RI, Utomo RY, Sasmito E, et al. Caesalpinia sappan L. heartwood ethanolic extract exerts genotoxic inhibitory and cytotoxic effects. Orient Pharm Exp Med. 2019;19:27–36. DOI: 10.1007/s13596-018-0351-9.

Shi X, Zhang Y, Zheng J, Pan J. Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 2012;16(11):1215-1228. DOI: 10.1089/ars.2012.4529.

Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:5381692,1-12.. DOI: 10.1155/2019/5381692.

Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G. Redox regulation in cancer stem cells. Oxid Med Cell Longev, 2015;2015:750798,1-11. DOI: 10.1155/2015/750798.

Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal and tumor stem cells. Adv Cancer res. 2014;122: 1-67. DOI: 10.1016/B978-0-12-420117-0.00001-3.

Hanif N, Hermawan A, Meiyanto E. Caesalpinia sappan L. ethanolic extract decrease intracellular ROS level and senescence of 4T1 breast cancer cells. Indones J Cancer Chemoprevention. 2019;10(1): 16-23. DOI: 10.14499/indonesianjcanchemoprev10iss1pp16-23.

Wang S, Zhang Y, Cong W, Liu J, Zhang Y, Fan H, , et al. Breast cancer stem-like cells can promote metastasis by activating platelets and down-regulating antitumor activity of natural killer cells. J Tradit Chin Med. 2016;36(4):530–537. DOI: 10.1016/s0254-6272(16)30071-1.

Bensimon J, Biard D, Paget V, Goislard M, Morel-Altmeyer S, Konge J, et al. Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress. Mol Carcinog. 2016;55(3):245–254. DOI: 10.1002/mc.22273..

Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep. 2018;8: 2039, 1–13. DOI: 10.1038/s41598-018-20179-6.

Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: a review of their characteristics and the agents that affect them. Mol Carcinog. 2021;60(2):73–100. DOI: 10.1002/mc.23277.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.