Curcumin supplementation prevents cisplatin-induced nephrotoxicity: a randomized, double-blinded, and placebo-controlled trial
Abstract
Background and purpose: Cisplatin-induced nephrotoxicity (CIN) remains the most prevailing unfavorable influence and may affect its clinical usage. This study sought to explore the possible impacts of curcumin on preventing CIN in human subjects.
Clinical design: The investigation was a placebo-controlled, double-blinded, randomized clinical trial conducted on 82 patients receiving nano-curcumin (80 mg twice daily for five days) or an identical placebo with standard nephroprotective modalities against CIN. Data was gathered on patients’ demographics, blood, urinary nitrogen, creatinine (Cr) levels, urinary electrolytes, and urine neutrophil gelatinase-associated lipocalin (NGAL) levels in treatment and placebo groups, 24 h and five days after initiating the administration of cisplatin.
Findings/Results: Both investigation groups were alike considering the demographic characteristics and clinical baseline data. Curcumin administration led to a significant improvement in blood-urine nitrogen (BUN). BUN, Cr, glomerular filtration rate (GFR), and the ratio of NGAL-to-Cr considerably altered during the follow-up periods. However, the further alterations in other indices, including urinary sodium, potassium, magnesium, NGAL values, and potassium-to-Cr ratio were not statistically noteworthy. The significant differences in the NGAL-to-Cr ratio between the two groups may indicate the potential protective impact of curcumin supplementation against tubular toxicity. Curcumin management was safe and well-accepted; only insignificant gastrointestinal side effects were reported.
Conclusion and implications: Curcumin supplementation may have the potential to alleviate CIN and urinary electrolyte wasting in cancer patients. Future research investigating the effects of a longer duration of follow-up, a larger participant pool, and a higher dosage of curcumin are recommended.
Keywords
Full Text:
PDFReferences
Fang C, Lou D, Zhou L, Wang J, Yang B, He Q, et al. Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin. 2021;42(12):1951-1969. DOI: 10.1038/s41401-021-00620-9.
Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53(2):148-158. DOI: 10.2478/raon-2019-0018.
Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31(1):15-25. DOI: 10.1007/s40620-017-0392-z.
Athira KV, Madhana RM, Lahkar M. Flavonoids, the emerging dietary supplement against cisplatin-induced nephrotoxicity. Chem Biol Interact. 2016;248:18-20. DOI: 10.1016/j.cbi.2016.02.005.
Maliakel DM, Kagiya TV, Nair CK. Prevention of cisplatin-induced nephrotoxicity by glucosides of ascorbic acid and alpha-tocopherol. Exp Toxicol Pathol. 2008;60(6):521-527. DOI: 10.1016/j.etp.2008.04.015.
Karademir LD, Dogruel F, Kocyigit I, Yazici C, Unal A, Sipahioglu MH, et al. The efficacy of theophylline in preventing cisplatin-related nephrotoxicity in patients with cancer. Ren Fail. 2016;38(5):806-814. DOI: 10.3109/0886022x.2016.1163154.
Huang S, You J, Wang K, Li Y, Zhang Y, Wei H, et al. N-Acetylcysteine attenuates cisplatin-induced acute kidney injury by inhibiting the C5a receptor. Biomed Res Int. 2019;2019:4805853,1-12. DOI: 10.1155/2019/4805853.
Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M, Abdollahi A, et al. Effect of silymarin administration on cisplatin nephrotoxicity: report from a pilot, randomized, double-blinded, placebo-controlled clinical trial. Phytother Res. 2015;29(7):1046-1053. DOI: 10.1002/ptr.5345.
Hakiminia B, Goudarzi A, Moghaddas A. Has vitamin E any shreds of evidence in cisplatin-induced toxicity. J Biochem Mol Toxicol. 2019;33(8):e22349,1-15. DOI: 10.1002/jbt.22349.
Katsuda H, Yamashita M, Katsura H, Yu J, Waki Y, Nagata N, et al. Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol Pharm Bull. 2010;33(11):1867-1871. DOI: 10.1248/bpb.33.1867.
Carvalho Rodrigues MA, Gobe G, Santos NA, Santos AC. Carvedilol protects against apoptotic cell death induced by cisplatin in renal tubular epithelial cells. J Toxicol Environ Health A. 2012;75(16-17):981-990. DOI: 10.1080/15287394.2012.696512.
Ataei N. Selenium can reduce the side effects of cisplatin as a chemotherapy drug. Res Pharm Sci. 2012;7(5):94.
Ghanbari A, Jalili C, Salahshoor MR, Javanmardy S, Ravankhah S, Akhshi N. Harmine mitigates cisplatin-induced renal injury in male mice through antioxidant, anti-inflammatory, and anti-apoptosis effects. Res Pharm Sci. 2022;17(4):417-427. DOI: 10.4103/1735-5362.350242.
Nematbakhsh M, Hajhashemi V, Ghannadi A, Talebi A, Nikahd M. Protective effects of the Morus alba L. leaf extracts on cisplatin-induced nephrotoxicity in rat. Res Pharm Sci. 2013;8(2):71-77. PMID: 24019816.
Jyotirmayee B, Mahalik G. A review on selected pharmacological activities of Curcuma longa L. Int J Food Prop. 2022;25(1):1377-1398. DOI: 10.1080/10942912.2022.2082464.
Kuhad A, Pilkhwal S, Sharma S, Tirkey N, Chopra K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J Agric Food Chem. 2007;55(25):10150-10155. DOI: 10.1021/jf0723965.
Ueki M, Ueno M, Morishita J, Maekawa N. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J Biosci Bioeng. 2013;115(5):547-551. DOI: 10.1016/j.jbiosc.2012.11.007.
Waly MI, Al Moundhri MS, Ali BH. Effect of curcumin on cisplatin- and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Ren Fail. 2011;33(5):518-523. DOI: 10.3109/0886022x.2011.577546.
Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52(Suppl 1):S128-S138. DOI: 10.1002/mnfr.200700195.
Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J. The transcription factor Nrf2 as a new therapeutic target in Parkinson's disease. Expert Opin Ther Targets. 2009;13(3):319-329. DOI: 10.1517/13543780802716501.
Eggler AL, Gay KA, Mesecar AD. Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res. 2008;52(Suppl 1):S84-S94. DOI: 10.1002/mnfr.200700249.
Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, et al. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J Cell Physiol. 2019;234(5):5728-5740. DOI: 10.1002/jcp.27442.
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787-809. DOI: 10.1016/j.bcp.2007.08.016.
Kwon Y. Curcumin as a cancer chemotherapy sensitizing agent. J Korean Soc Appl Biol Chem. 2014;57(2):273-280. DOI: 10.1007/s13765-014-4077-1.
Zoi V, Galani V, Tsekeris P, Kyritsis AP, Alexiou GA. Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers. Biomedicines. 2022;10(2):312,1-13. DOI: 10.3390/biomedicines10020312.
Péus D, Newcomb N, Hofer S. Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation. BMC Med Inform Decis Mak. 2013;13(1):72,1-7. DOI: 10.1186/1472-6947-13-72.
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612. DOI: 10.7326/0003-4819-150-9-200905050-00006.
Bajracharya SR, Ghimire R, Gyanwali P, Khadka A. Causality assessment of adverse drug reaction using naranjo probability scale: a retrospective study. Med J Shree Birendra Hosp. 2020;19(1):16-19. DOI: 10.3126/mjsbh.v19i1.21573.
Lin CY, Chen YC. Acute kidney injury classification: AKIN and RIFLE criteria in critical patients. World J Crit Care Med. 2012;1(2):40-45. DOI: 10.5492/wjccm.v1.i2.40.
Ghorbani A, Omidvar B, Parsi A. Protective effect of selenium on cisplatin induced nephrotoxicity: a double-blind controlled randomized clinical trial. J Nephropathol. 2013;2(2):129-134. DOI: 10.12860/jnp.2013.21.
Common Terminology Criteria forAdverse Events V5.0 (CTCAE) 2020. Available from: https://ctep.cancer.gov/protocoldevelopment/.
Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994-1007. DOI: 10.1038/sj.ki.5002786.
Ghadrdan E, Sadighi S, Ebrahimpour S, Abdollahi A, Hadjibabaei M, Gholami K, et al. The effect of melatonin on cisplatin-induced nephrotoxicity: a pilot, randomized, double-blinded, placebo-controlled clinical trial. Eur J Integr Med. 2020;34:101065,1-7. DOI: 10.1016/j.eujim.2020.101065.
Karvan S, Sadeghi A, Farrokhi P, Nekouee A, Sharifi M, Moghaddas A. Melatonin in the prevention of cisplatin-induced acute nephrotoxicity: a randomized, controlled clinical trial. Res Pharm Sci. 2022;17(2):176-188. DOI: 10.4103/1735-5362.335176.
Soetikno V, Sari SDP, Ul Maknun L, Sumbung NK, Rahmi DNI, Pandhita BAW, et al. Pre- treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res. 2019;69(2):75-82. DOI: 10.1055/a-0641-5148.
Topcu-Tarladacalisir Y, Sapmaz-Metin M, Karaca T. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren Fail. 2016;38(10):1741-1748. DOI: 10.1080/0886022x.2016.1229996.
Al Fayi M, Otifi H, Alshyarba M, Dera AA, Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1, and ameliorating Nrf2/HO-1 signaling. J Drug Target. 2020;28(9):913-922. DOI: 10.1080/1061186x.2020.1722136.
Ortega-Domínguez B, Aparicio-Trejo OE, García-Arroyo FE, León-Contreras JC, Tapia E, Molina-Jijón E, et al. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem Toxicol. 2017;107(Pt A):373-385. DOI: 10.1016/j.fct.2017.07.018.
Benzer F, Kandemir FM, Kucukler S, Comaklı S, Caglayan C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch Physiol Biochem. 2018;124(5):448-457. DOI: 10.1080/13813455.2017.1422766.
Al-kuraishy H, Al-Gareeb A, Abdulbaki H. Antioxidant and anti-inflammatory effects of curcumin contribute in to attenuation of acute gentamicin-induced nephrotoxicity in rats. Asian J Pharm Clin Res. 2019;12(3):466-468. DOI: 10.22159/ajpcr.2019.v12i3.30875.
Huang J, Yao X, Weng G, Qi H, Ye X. Protective effect of curcumin against cyclosporine A‑induced rat nephrotoxicity. Mol Med Rep. 2018;17(4):6038-6044. DOI: 10.3892/mmr.2018.8591.
Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, et al. Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer. 2020;20(1):791,1-11. DOI: 10.1186/s12885-020-07256-8.
Ryan JL, Heckler CE, Ling M, Katz A, Williams JP, Pentland AP, et al. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res. 2013;180(1):34-43. DOI: 10.1667/rr3255.1.
Delavarian Z, Pakfetrat A, Ghazi A, Jaafari MR, Homaei Shandiz F, Dalirsani Z, et al. Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers. Spec Care Dentist. 2019;39(2):166-172. DOI: 10.1111/scd.12358.
Kia SJ, Basirat M, Saedi HS, Arab SA. Effects of nanomicelle curcumin capsules on prevention and treatment of oral mucosits in patients under chemotherapy with or without head and neck radiotherapy: a randomized clinical trial. BMC Complement Med Ther. 2021;21(1):232,1-11. DOI: 10.1186/s12906-021-03400-4.
Chiruvella V, Annamaraju P, Guddati AK. Management of nephrotoxicity of chemotherapy and targeted agents: 2020. Am J Cancer Res. 2020;10(12):4151-4164. PMID: 33414992.
Sandoughdaran S, Razzaghdoust A, Tabibi A, Basiri A, Simforoosh N, Mofid B. Randomized, double-blind pilot study of nanocurcumin in bladder cancer patients receiving induction chemotherapy. Urol J. 2021;18(3):295-300. DOI: 10.22037/uj.v0i0.5719.
Sharkey L. Kidney function tests. In: Pusterla N, Higgins J, Editors. Interpretation of equine laboratory diagnostics. John Wiley & Sons, Inc. 2017. p. 39-43. DOI: 10.1002/9781118922798.ch6.
Oh DJ. A long journey for acute kidney injury biomarkers. Ren Fail. 2020;42(1):154-165. DOI: 10.1080/0886022X.2020.1721300.
Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955-1968. DOI: 10.1016/j.ejca.2005.05.009.
Ma Z, Wang N, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359-380. DOI: 10.1016/j.jconrel.2019.10.053.
Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous K, Ghayour Mobarhan M, et al. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J Phytomed. 2016;6(5):567-577. DOI: 10.22038/ajp.2016.6761.
Ahmadi M, Agah E, Nafissi S, Jaafari MR, Harirchian MH, Sarraf P, et al. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a pilot randomized clinical trial. Neurotherapeutics. 2018;15(2):430-438. DOI: 10.1007/s13311-018-0606-7.
Howells LM, Iwuji COO, Irving GRB, Barber S, Walter H, Sidat Z, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr. 2019;149(7): 1133-1139. DOI: 10.1093/jn/nxz029.
Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 2010;78(5):486-494. DOI: 10.1038/ki.2010.165.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.