Insights on the conformation and appropriate drug-target sites on retinal IMPDH1 using the 604-aa isoform lacking the C-terminal extension

Parisa Elyasi-Ebli , Razieh Yazdanparast , Sajjad Gharaghani, Ebrahim Barzegari

Abstract


Background and purpose: Retinitis pigmentosa (RP) accounts for 2 percent of global cases of blindness. The RP10 form of the disease results from mutations in isoform 1 of inosine 5'-monophosphate dehydrogenase (IMPDH1), the rate-limiting enzyme in the de novo purine nucleotide synthesis pathway. Retinal photoreceptors contain specific isoforms of IMPDH1 characterized by terminal extensions. Considering previously reported significantly varied kinetics among retinal isoforms, the current research aimed to investigate possible structural explanations and suitable functional sites for the pharmaceutical targeting of IMPDH1 in RP.

Experimental approach: A recombinant 604-aa IMPDH1 isoform lacking the carboxyl-terminal peptide was produced and underwent proteolytic digestion with α-chymotrypsin. Dimer models of wild type and engineered 604-aa isoform were subjected to molecular dynamics simulation.

Findings/Results: The IMPDH1 retinal isoform lacking C-terminal peptide was shown to tend to have more rapid proteolysis (~16% digestion in the first two minutes). Our computational data predicted the potential of the amino-terminal peptide to induce spontaneous inhibition of IMPDH1 by forming a novel helix in a GTP binding site. On the other hand, the C-terminal peptide might block the probable inhibitory role of the                         N-terminal extension.

Conclusion and implications: According to the findings, augmenting IMPDH1 activity by suppressing its filamentation is suggested as a suitable strategy to compensate for its disrupted activity in RP. This needs specific small molecule inhibitors to target the filament assembly interface of the enzyme.

 

 


Keywords


Inosine monophosphate dehydrogenase; Molecular dynamics simulation; Proteolytic digestion; Retinal isoforms; Retinitis pigmentosa.

Full Text:

PDF

References


Bowne SJ, Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ, et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2006;47(1):34-42. DOI: 10.1167/iovs.05-0868.

Majd N, Sumita K, Yoshino H, Chen D, Terakawa J, Daikoku T, et al. A review of the potential utility of mycophenolate mofetil as a cancer therapeutic. J Cancer Res. 2014;2014(6):1-12. DOI: 10.1155/2014/423401.

Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev. 2009;109(7):2903-2928. DOI: 10.1021/cr900021w.

Spellicy CJ, Xu D, Cobb G, Hedstrom L, Bowne SJ, Sullivan LS, et al. Investigating the mechanism of disease in the RP10 form of retinitis pigmentosa. Adv Exp Med Biol. 2010;664:541-548. DOI: 10.1007/978-1-4419-1399-9_62.

Baykov AA, Tuominen HK, Lahti R. The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem Biol. 2011;6(11):1156-1163. DOI: 10.1021/cb200231c.

Hedstrom L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α) (8) barrel enzymes. Crit Rev Biochem Mol Biol. 2012;47(3):250-263. DOI: 10.3109/10409238.2012.656843.

Glanser ME, Gerlt JA, Babbitt PC. Evolution of enzyme superfamilies. Curr Opin Chem Biol. 2006;10(5):492-497. DOI: 10.1016/j.cbpa.2006.08.012.

Soskine M, Tawfik DS. Mutational effects and the evolution of new protein functions. Nat Rev Genet. 2010;11(8):572-582. DOI: 10.1038/nrg2808.

Labesse G, Alexandre T, Vaupré L, Salard-Arnaud I, Him JL, Raynal B, et al. MgATP regulates allostery and fiber formation in IMPDHs. Structure. 2013;21(6):975-985. DOI: 10.1016/j.str.2013.03.011.

Min D, Josephine HR, Li H, Lakner C, MacPherson IS, Naylor GJ, et al. An enzymatic atavist revealed in dual pathways for water activation. PLoS Biol. 2008;6(8):e206,1-9. DOI: 10.1371/journal.pbio.0060206.

Buey RM, Ledesma-Amaro R, Velázquez-Campoy A, Balsera M, Chagoyen M, de Pereda JM, et al. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun. 2015;6:8923,1-11. DOI: 10.1038/ncomms9923.

Buey RM, Fernández-Justel D, Marcos-Alcalde Í, Winter G, Gómez-Puertas P, de Pereda JM, et al. A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci Rep. 2017;7(1):2648,1-12. DOI: 10.1038/s41598-017-02805-x.

Johnson MC, Kollman JM. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. Elife. 2020;9: e53243,1-27. DOI: 10.7554/eLife.53243.

Andashti B, Yazdanparast R, Barzegari E, Galehdari H. The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation. Mol Cell Biochem. 2020;465(1-2):155-164. DOI: 10.1007/s11010-019-03675-9.

Burrell AL, Nie C, Said M, Simonet JC, Fernández-Justel D, Johnson MC, et al. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat Struct Mol Biol. 2022;29(1):47-58. DOI: 10.1038/s41594-021-00706-2.

Nimmesgern E, Fox T, Fleming MA, Thomson JA. Conformational changes and stabilization of inosine 5'-monophosphate dehydrogenase associated with ligand binding and inhibition by mycophenolic acid. J Biol Chem. 1996;271(32):19421-19427. DOI: 10.1074/jbc.271.32.19421.

Waterborg JH, Matthews HR. The Lowry method for protein quantitation. Methods Mol Biol. 1994;32:1-4. DOI: 10.1385/0-89603-268-X:1.

Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-1718. DOI: 10.1002/jcc.20291.

Huang J, MacKerell Jr AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135-2145. DOI: 10.1002/jcc.23354.

Koder Hamid M, Månsson LK, Meklesh V, Persson P, Skepö M. Molecular dynamics simulations of the adsorption of an intrinsically disordered protein: force field and water model evaluation in comparison with experiments. Front Mol Biosci. 2022;9:958175,1-14. DOI: 10.3389/fmolb.2022.958175.

Haug EJ, Arora JS, Matsui K. A steepest-descent method for optimization of mechanical systems. J Optim Theory Appl. 1976;19(3):401-424. DOI: 10.1007/bf00941484.

Berendsen H, Postma J, van Gunsteren W, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684-3690. DOI: 10.1063/1.448118.

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182-7190. DOI: 10.1063/1.328693.

Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol. 2012;179(3):269-278. DOI: 10.1016/j.jsb.2011.09.006.

Gunter JH, Thomas EC, Lengefeld N, Kruger SJ, Worton L, Gardiner EM, et al. Characterization of inosine monophosphate dehydrogenase expression during retinal development: differences between variants and isoforms. Int J Biochem Cell Biol. 2008;40(9):1716-1728. DOI: 10.1016/j.bioce l.2007.12.018

Xu D, Cobb G, Spellicy C, Bowne SJ, Daiger SP, Hedstrom L. Retinal isoforms of inosine 5-monophosphate dehydrogenase type 1 are poor nucleic acid binding proteins. Arch Biochem Biophys. 2008;472(2):100-104. DOI: 10.1016/j.abb.2008.02.012.

Plana-Bonamaisó A, López-Begines S, Fernández-Justel D, Junza A, Soler-Tapia A, Andilla J, et al. Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. Elife. 2020;9:e56418,1-31. DOI: 10.7554/eLife.56418

Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, et al. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One. 2012;7(12):e51096,1-14. DOI: 10.1371/journal.pone.0051096

Mortimer SE, Hedstrom L. Autosomal dominant retinitis pigmentosa mutations in inosine 5′-monophosphate dehydrogenase type I disrupt nucleic acid binding. Biochem J. 2005;390(Pt 1):41-47. DOI: 10.1042/BJ20042051.

Wang XT, Mion B, Aherne A, Engel PC. Molecular recruitment as a basis for negative dominant inheritance? Propagation of misfolding in oligomers of IMPDH1, the mutated enzyme in the RP10 form of retinitis pigmentosa. Biochim Biophys Acta. 2011;1812(11):1472-1476. DOI: 10.1016/j.bbadi s.2011.07.006.

Seyedhosseini Ghaheh H, Ganjalikhany M, Yaghmaei P, Pourfarzam M, Mir Mohammad Sadeghi H. Improving the solubility, activity, and stability of reteplase using in silico design of new variants. Res Pharm Sci. 2019;14(4): 359-368. DOI: 10.4103/1735-5362.263560.

Fassihi A, Hasanzadeh F, Movahedian Attar A, Saghaie L, Mohammadpour M. Synthesis and evaluation of antioxidant activity of some novel hydroxypyridinone derivatives: a DFT approach for explanation of their radical scavenging activity. Res Pharm Sci. 2020;15(6):515-528. DOI: 10.4103/1735-5362.301336.

Balaei F, Ansari M, Farhadian N, Moradi S, Shahlaei M. Interactions and effects of food additive dye Allura red on pepsin structure and protease activity; experimental and computational supports. Res Pharm Sci. 2021;16(1):58-70. DOI: 10.4103/1735-5362.305189.

Andashti B, Yazdanparast R, Motahar M, Barzegari E, Galehdari H. Terminal peptide extensions augment the retinal IMPDH1 catalytic activity and attenuate the ATP-induced fibrillation events. Cell Biochem Biophys. 2021;79(2):221-229. DOI: 10.1007/s12013-021-00973-2.

Spellicy CJ, Daiger SP, Sullivan LS, Zhu J, Liu Q, Pierce EA, et al. Characterization of retinal inosine monophosphate dehydrogenase 1 in several mammalian species. Mol Vis. 2007;13:1866-1872. PMID: 17960124.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.