Association of SLC22A1, SLC47A1, and KCNJ11 polymorphisms with efficacy and safety of metformin and sulfonylurea combination therapy in Egyptian patients with type 2 diabetes

Aya Ahmed , Hany M. Elsadek, Sally M. Shalaby, Hanan M. Elnahas4

Abstract


Background and purpose: Multidrug and toxin extrusion transporter 1 (MATE1), encoded by the SLC47A1 gene and single nucleotide polymorphisms of organic cation transport 1, may impact metformin's responsiveness and side effects. Inward-rectifier potassium channel 6.2 (Kir 6.2) subunits encoded by KCNJ11 may affect the response to sulfonylurea. This study aimed to evaluate the association between SLC22A1 rs72552763 and rs628031, SLC47A1 rs2289669 and KCNJ11 rs5219 genetic variations with sulfonylurea and metformin combination therapy efficacy and safety in Egyptian type 2 diabetes mellitus patients.

Experimental approach: This study was conducted on 100 cases taking at least one year of sulfonylurea and metformin combination therapy. Patients were genotyped via the polymerase chain reaction-restriction fragment length polymorphism technique. Then, according to their glycated hemoglobin level, cases were subdivided into non-responders or responders. Depending on metformin-induced gastrointestinal tract side effects incidence, patients are classified as tolerant or intolerant.

Findings/Results: KCNJ11 rs5219 heterozygous and homozygous mutant genotypes, SLC47A1 rs2289669 heterozygous and homozygous mutant genotypes (AA and AG), and mutant alleles of both polymorphisms were significantly related with increased response to combined therapy. Individuals with the SLC22A1 (rs72552763) GAT/del genotype and the SLC22A1 (rs628031) AG and AA genotypes were at a higher risk for metformin-induced gastrointestinal tract adverse effects.

Conclusion and implications: The results implied a role for SLC47A1 rs2289669 and KCNJ11 rs5219 in the responsiveness to combined therapy. SLC22A1 (rs628031) and (rs72552763) polymorphisms may be associated with increased metformin adverse effects in type 2 diabetes mellitus patients.

 

 


Keywords


Metformin and sulfonylurea combination therapy; Single nucleotide polymorphisms;Type 2 diabetes mellitus.

Full Text:

PDF

References


International Diabetes Federation. IDF Diabetes Atlas. 10th ed. 2021. Available at: https://www.diabetesatlas.org

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2):88-98. DOI: 10.1038/nrendo.2017.151.

Cai X, Gao X, Yang W, Han X, Ji L. Efficacy and safety of initial combination therapy in treatment-naïve type 2 diabetes patients: a systematic review and meta-analysis. Diabetes Ther. 2018;9(5): 1995-2014. DOI: 10.1007/s13300-018-0493-2.

American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes Care. 2022;45 (Suppl 1): S125-S143. DOI: 10.2337/dc22-S009.

Bolen S, Tseng E, Hutfless S, Segal JB, Suarez-Cuervo C, Berger Z, et al. Diabetes medications for adults with type 2 diabetes: an update. USA: Agency for Healthcare Research and Quality; 2016. pp. ES1-ES27. PMID: 27227214.

Ahrén B, Johnson SL, Stewart M, Cirkel DT, Yang F, Perry C, et al. HARMONY 3: 104-week randomized, double-blind, placebo- and active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin. Diabetes Care. 2014;37(8):2141-2148. DOI: 10.2337/dc14-0024.

Kim HS, Kim DM, Cha BS, Park TS, Kim KA, Kim DL, et al. Efficacy of glimepiride/metformin fixed-dose combination vs metformin uptitration in type 2 diabetic patients inadequately controlled on low-dose metformin monotherapy: a randomized, open label, parallel group, multicenter study in Korea. J Diabetes Investig. 2014;5(6):701-708. DOI: 10.1111/jdi.12201.

Ordelheide AM, Hrabě de Angelis M, Häring HU, Staiger H. Pharmacogenetics of oral antidiabetic therapy. Pharmacogenomics. 2018;19(6):577-587. DOI: 10.2217/pgs-2017-0195.

Liang X, Giacomini KM. Transporters involved in metformin pharmacokinetics and treatment response. J Pharm Sci. 2017;106(9):2245-2250. DOI: 10.1016/j.xphs.2017.04.078.

Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC. Metformin pharmacogenomics: current status and future directions. Diabetes. 2014;63(8):2590-2599. DOI: 10.2337/db13-1367.

Dawed AY, Zhou K, van Leeuwen N, Mahajan A, Robertson N, Koivula R, et al. Variation in the plasma membrane monoamine transporter (PMAT) (encoded by SLC29A4) and organic cation transporter 1 (OCT1) (Encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: an IMI DIRECT study. Diabetes Care. 2019;42(6):1027-1033. DOI: 10.2337/dc18-2182.

Chen L, Takizawa M, Chen E, Schlessinger A, Segenthelar J, Choi JH, et al. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J Pharmacol Exp Ther. 2010;335(1):42-50. DOI: 10.1124/jpet.110.170159.

Zhou Y, Ye W, Wang Y, Jiang Z, Meng X, Xiao Q, et al. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int J Clin Exp Pathol. 2015;8(8):9533-9542.PMID: 26464716.

Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet. 2007;52(2):117-122. DOI: 10.1007/s10038-006-0087-0.

Tarasova L, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-Zake L, et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics. 2012;22(9):659-666. DOI: 10.1097/FPC.0b013e3283561666.

Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117(5):1422-1431. DOI: 10.1172/jci30558.

Dujic T, Causevic A, Bego T, Malenica M, Velija-Asimi Z, Pearson ER, et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabet Med. 2016;33(4):511-514. DOI: 10.1111/dme.13040.

Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. 2015;64(5):1786-1793. DOI: 10.2337/db14-1388.

Sundelin E, Gormsen LC, Jensen JB, Vendelbo MH, Jakobsen S, Munk OL, et al. Genetic polymorphisms in organic cation transporter 1 attenuates hepatic metformin exposure in humans. Clin Pharmacol Ther. 2017;102(5):841-848. DOI: 10.1002/cpt.701.

Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol. 2010;298(4):F997-F 1005. DOI: 10.1152/ajprenal.00431.2009.

He R, Zhang D, Lu W, Zheng T, Wan L, Liu F, et al. SLC47A1 gene rs2289669 G>A variants enhance the glucose-lowering effect of metformin via delaying its excretion in Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 2015;109(1):57-63. DOI: 10.1016/j.diabres.2015.05.003.

Tkáč I, Klimčáková L, Javorský M, Fabianová M, Schroner Z, Hermanová H, et al. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab. 2013;15(2):189-191. DOI: 10.1111/j.1463-1326.2012.01691.x.

Gribble FM, Reimann F. Sulphonylurea action revisited: the post-cloning era. Diabetologia. 2003;46(7):875-891. DOI: 10.1007/s00125-003-1143-3.

Walczewska-Szewc K, Nowak W. Structural determinants of insulin release: disordered n-terminal tail of Kir6.2 affects potassium channel dynamics through interactions with sulfonylurea binding region in a SUR1 partner. J Phys Chem B. 2020;124(29):6198-6211. DOI: 10.1021/acs.jpcb.0c02720.

Li Q, Chen M, Zhang R, Jiang F, Wang J, Zhou J, et al. KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2014;41(10):748-754. DOI: 10.1111/1440-1681.12280.

Javorsky M, Klimcakova L, Schroner Z, Zidzik J, Babjakova E, Fabianova M, et al. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med. 2012;23(3):245-249. DOI: 10.1016/j.ejim.2011.10.018.

Knapp S, Zakaria Z, Hashem M, Zaghla H, Khakoo SI, Waked I, et al. Influence of IFNL3.rs12979860 and IFNL4.ss469415590 polymorphism on clearance of hepatitis C virus infection among Egyptians. Hepatol Int. 2015;9(2):251-257. DOI: 10.1007/s12072-015-9619-z.

Khalil BM, Shahin MH, Solayman MH, Langaee T, Schaalan MF, Gong Y, et al. Genetic and nongenetic factors affecting clopidogrel response in the Egyptian population. Clin Transl Sci. 2016;9(1):23-28. DOI: 10.1111/cts.12383.

Shahin MH, Khalifa SI, Gong Y, Hammad LN, Sallam MT, El Shafey M, et al. Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet Genomics. 2011;21(3):130-135. DOI: 10.1097/FPC.0b013e3283436b86.

American Diabetes Association Professional Practice Committee. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022;45 (Suppl 1):S83-S96. DOI: 10.2337/dc22-S006.

Ningrum VD, Istikharah R, Firmansyah R. Allele frequency of SLC22A1 Met420del metformin main transporter encoding gene among Javanese-Indonesian population. Open Access Maced J Med Sci. 2019;7(3):378-383. DOI: 10.3889/oamjms.2019.087.

Umamaheswaran G, Praveen RG, Arunkumar AS, Das AK, Shewade DG, Adithan C. Genetic analysis of OCT1 gene polymorphisms in an Indian population. Indian J Hum Genet. 2011;17(3):164-168. DOI: 10.4103/0971-6866.92094.

Ningrum V, Ikawati Z, Sadewa A, Ikhsan R. Allele frequencies of two main metformin transporter genes: SLC22A1 rs628031 A>G and SLC47A1 rs2289669 G>A among the Javanese population in Indonesia. Curr Pharmacogenomics Person Med. 2017;15(2):121-128. DOI: 10.2174/1875692115666170706113120.

Ezenwaka C, Kalloo R, Uhlig M, Schwenk R, Eckel J. The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel does not augment impaired glucose tolerance in Caribbean subjects with a family history of type 2 diabetes. J Endocrinol. 2005;185(3):439-444. DOI: 10.1677/joe.1.06117.

Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009;9(4):242-247. DOI: 10.1038/tpj.2009.15.

Shokri F, Ghaedi H, Ghafouri Fard S, Movafagh A, Abediankenari S, Mahrooz A, et al. Impact of ATM and SLC22A1 polymorphisms on therapeutic response to metformin in Iranian diabetic patients. Int J Mol Cell Med. 2016;5(1):1-7.

Sur D, editor A tale of genetic variation in the human SLC22A1 gene encoding OCT1 among type 2 diabetes mellitus population groups of West Bengal, India. J Mol Genet Med 2015;9(3):102.DOI: 10.4172/1747-0862.C1.010.

Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227-1240. DOI: 10.1002/hep.23103.

Reséndiz-Abarca CA, Flores-Alfaro E, Suárez-Sánchez F, Cruz M, Valladares-Salgado A, Del Carmen Alarcón-Romero L, et al. Altered glycemic control associated with polymorphisms in the SLC22A1 (OCT1) gene in a Mexican population with type 2 diabetes mellitus treated with metformin: a cohort study. J Clin Pharmacol. 2019;59(10):1384-1390. DOI: 10.1002/jcph.1425.

Seitz T, Stalmann R, Dalila N, Chen J, Pojar S, Dos Santos Pereira JN, et al. Global genetic analyses reveal strong inter-ethnic variability in the loss of activity of the organic cation transporter OCT1. Genome Med. 2015;7(1):56,1-23. DOI: 10.1186/s13073-015-0172-0.

Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851-1860. DOI: 10.1016/j.bcp.2005.09.011.

Han TK, Everett RS, Proctor WR, Ng CM, Costales CL, Brouwer KL, et al. Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco-2 cell monolayers and enterocytes. Mol Pharmacol. 2013;84(2):182-189. DOI: 10.1124/mol.112.084517.

Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney ASF, Leese G, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes. 2009;58(6):1434-1439. DOI: 10.2337/db08-0896.

Davis R, Giacomini K, Yee SW, Jenkins G, McCarty C, Wilke R. PS1-10: Response to metformin and genetic variants of organic cation and multidrug and toxin extrusion transporters. Clin Med Res. 2010;8(3-4):191. DOI: 10.3121/cmr.2010.943.ps1-10.

Ortega-Ayala A, Rodríguez-Rivera NS, Andrés F, A LL, Pérez-Silva E, Espinosa-Sánchez AG, et al. Pharmacogenetics of metformin transporters suggests no association with therapeutic inefficacy among diabetes type 2 Mexican patients. Pharmaceuticals (Basel). 2022;15(7):774,1-22. DOI: 10.3390/ph15070774.

Christensen MMH, Højlund K, Hother-Nielsen O, Stage TB, Damkier P, Beck-Nielsen H, et al. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers. Eur J Clin Pharmacol. 2015;71(6):691-697. DOI: 10.1007/s00228-015-1853-8.

Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther. 2008;83(2):273-280. DOI: 10.1038/sj.clpt.6100275.

Christensen MM, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21(12):837-850. DOI: 10.1097/FPC.0b013e32834c0010.

Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes. 2009;58(3):745-749. DOI: 10.2337/db08-1028.

Klen J, Goričar K, Janež A, Dolžan V. The role of genetic factors and kidney and liver function in glycemic control in type 2 diabetes patients on long-term metformin and sulphonylurea cotreatment. Biomed Res Int. 2014;2014:934729,1-8. DOI: 10.1155/2014/934729.

Xiao D, Guo Y, Li X, Yin JY, Zheng W, Qiu XW, et al. The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients. Int J Endocrinol. 2016;2016:4350712,1-8. DOI: 10.1155/2016/4350712.

Holstein A, Hahn M, Stumvoll M, Kovacs P. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm Metab Res. 2009;41(5):387-390. DOI: 10.1055/s-0029-1192019.

El-Sisi AE, Hegazy SK, Metwally SS, Wafa AM, Dawood NA. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2011;2(4):155-164. DOI: 10.1177/2042018811415985.

Sesti G, Laratta E, Cardellini M, Andreozzi F, Del Guerra S, Irace C, et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(6):2334-2339. DOI: 10.1210/jc.2005-2323.

Nielsen EMD, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glümer C, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2003;52(2):573-577. DOI: 10.2337/diabetes.52.2.573.

Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes. 2002;51(3):875-879. DOI: 10.2337/diabetes.51.3.875.

Tschritter O, Stumvoll M, Machicao F, Holzwarth M, Weisser M, Maerker E, et al. The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes. 2002;51(9):2854-2860. DOI: 10.2337/diabetes.51.9.2854.

Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabet Med. 2001;18(3):206-212. DOI: 10.1046/j.1464-5491.2001.00449.x.

Klen J, Dolžan V, Janež A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol. 2014;70(4):421-428. DOI: 10.1007/s00228-014-1641-x.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.