Antinociceptive and anti-inflammatory actions of curcumin and nano curcumin: a comparative study

Mojdeh Mohammadi , Farshid Sangin Abadi, Rasool Haddadi, Amir Nili-Ahmadabadi

Abstract


Background and purpose: Pain and inflammation can be treated by various therapies that for the most part are not effective and can result in adverse effects. The current study was proposed to compare the antinociceptive and anti-inflammatory actions of curcumin and nano curcumin in rats.

Experimental approach: Rats were randomly allocated into ten groups of six for formalin and tail-flick tests including the control group, curcumin and nano curcumin groups (20, 50, 100 mg/kg), morphine group                      (10 mg/kg), naloxone + 100 mg/kg curcumin group, and naloxone + 100 mg/kg nano curcumin group. There were nine groups for the carrageenan test. Groups 1-7 were the same as the previous division; groups 8 and 9 received 10 mg/kg diclofenac and 1% carrageenan, respectively.

Findings/Results: All doses of nano curcumin significantly decreased the paw-licking time in both phases of the formalin test. In the tail-flick test, curcumin 100, nano curcumin 100, naloxone + curcumin 100, and naloxone + nano curcumin 100 showed significant analgesic effects compared to the control group. In the paw edema test, at 180 s after injection, curcumin (50 and 100 mg/kg) and all doses of nano curcumin significantly inhibited carrageenan-induced edema. Myeloperoxidase activity and lipid peroxidation decreased at doses of 50 and 100 mg/kg of curcumin but at three doses of nano curcumin (20, 50, and 100 mg/kg).

Conclusion and implication: In conclusion, our results suggest that the nanoemulsion formulation of curcumin can be efficient in reducing pain and especially inflammation in lower doses compared to the native form of curcumin.


Keywords


Antinociceptive effects; Curcuma longa; Curcumin; Nano curcumin.

Full Text:

PDF

References


Boonyarikpunchai W, Sukrong S, Towiwat P. Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacol Biochem Behav. 2014;124:67-73. DOI: 10.1016/j.pbb.2014.05.004

Manjiani D, Paul DB, Kunnumpurath S, Kaye AD, Vadivelu N. Availability and utilization of opioids for pain management: global issues. Ochsner J. 2014;14(2):208-215. PMID: 24940131.

Silva CR, Campos JL, Villarreal VE, Calderón AA, Blas MV, Aspajo CL, et al. Potential activity of medicinal plants as pain modulators: a review. Pharmacognosy J. 2021;13(1):248-263. DOI: 10.5530/pj.2021.13.35.

Silva DPB, Florentino IF, Oliveira LP, Lino RC, Galdino PM, Menegatti R, et al. Anti-nociceptive and anti-inflammatory activities of 4-[(1-phenyl-1H-pyrazol-4-yl) methyl] 1-piperazine carboxylic acid ethyl ester: a new piperazine derivative. Pharmacol Biochem Behav. 2015;137: 86-92. DOI: 10.1016/j.pbb.2015.08.008.

Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and health. Molecules. 2016;21(3):264,1-22. DOI: 10.3390/molecules21030264.

Szymusiak M, Hu X, Plata PAL, Ciupinski P, Wang ZJ, Liu Y. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int J Pharm. 2016;511(1): 415-423. DOI: 10.1016/j.ijpharm.2016.07.027

Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976; 25(15): 1811-1812. DOI: 10.1016/0006-2952(76)90421-4.

Jefremov V, Zilmer M, Zilmer K, Bogdanovic N, Karelson E. Antioxidative effects of plant polyphenols: from protection of g protein signaling to prevention of age‐related pathologies. Ann N Y Acad Sci. 2007;1095(1):449-457. DOI: 10.1196/annals.1397.048.

Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326(2):472-474. DOI: 10.1016/j.bbrc.2004.11.051.

Vera‐Ramirez L, Pérez‐Lopez P, Varela‐Lopez A, Ramirez‐Tortosa M, Battino M, Quiles JL. Curcumin and liver disease. Biofactors. 2013;39(1):88-100. DOI: 10.1002/biof.1057.

Brondino N, Re S, Boldrini A, Cuccomarino A, Lanati N, Barale F, et al. Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies. Sci World J. 2014;2014: 174282,1-7. DOI: 10.1155/2014/174282

Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer's disease-merits and limitations. Curr Med Chem. 2013;20(32):3955-3985. DOI: 10.2174/09298673113209990210.

Aggarwal BB, Surh YJ, Shishodia S, editors. The molecular targets and therapeutic uses of curcumin in health and disease. New York: Springer Science & Business Media; 2007. pp. 1-75. DOI: 10.1007/978-0-387-46401-5.

Manolova Y, Deneva V, Antonov L, Drakalska E, Momekova D, Lambov N. The effect of the water on the curcumin tautomerism: a quantitative approach. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:815-820. DOI: 10.1016/j.saa.2014.05.096.

Itokawa H, Shi Q, Akiyama T, Morris-Natschke SL, Lee KH. Recent advances in the investigation of curcuminoids. Chin Med. 2008;3(1):11,1-13. DOI: 10.1186/1749-8546-3-11.

Tapal A, Tiku PK. Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 2012;130(4): 960-965. DOI: 10.1016/j.foodchem.2011.08.025.

Liu A, Lou H, Zhao L, Fan P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal. 2006;40(3):720-727. DOI: 10.1016/j.jpba.2005.09.032

Hassan SK, Mousa AM, Eshak MG, Farrag A, Badawi A. Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Int J Pharm Pharm Sci. 2014;6(3):54-62.

Li M, Xin M, Guo C, Lin G, Wu X. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm. 2017;43(11):1846-1857. DOI: 10.1080/03639045.2017.1349787.

Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987;30(1):103-114. DOI: 10.1016/0304-3959(87)90088-1.

dos Santos DA, Fukui MdJ, Nanayakkara ND, Khan SI, Sousa JPB, Bastos JK, et al. Anti-inflammatory and antinociceptive effects of Baccharis dracunculifolia DC (Asteraceae) in different experimental models. J Ethnopharmacol. 2010;127(2):543-550. DOI: 10.1016/j.jep.2009.09.061

Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51(1):5-17. DOI: 10.1016/0304-3959(92)90003-t.

D'Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72(1):74-79.

Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med.1962;111(3):544-547. DOI: 10.3181/00379727-111-27849.

Huang G-J, Pan CH, Liu FC, Wu TS, Wu CH. Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246. 7 macrophages and the λ-carrageenan-induced paw edema model. Food Chem Toxicol. 2012;50(5):1485-1493. DOI: 10.1016/j.fct.2012.01.041.

Maioli N, Zarpelon A, Mizokami S, Calixto-Campos C, Guazelli C, Hohmann M, et al. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. Braz J Med Biol Res. 2015;48(4):321-331. DOI: 10.1590/1414-431X20144187.

Al-Enazi MM. Protective effects of combined therapy of rutin with silymarin on experimentally-induced diabetic neuropathy in rats. Pharmacol Pharm. 2014;5(9):876-889. DOI: 10.4236/pp.2014.59098.

Li Y, Zhang Y, Liu DB, Liu HY, Hou WG, Dong YS. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int J Med Sci. 2013;10(4):377-381. DOI: 10.7150/ijms.5224.

Fattori V, Pinho-Ribeiro FA, Borghi SM, Alves-Filho JC, Cunha TM, Cunha FQ, et al. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. Inflamm Res. 2015;64(12):993-1003. DOI: 10.1007/s00011-015-0885-y.

Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF‐alpha. Phytother Res. 2007;21(3):278-283. DOI: 10.1002/ptr.2070.

Banafshe HR, Hamidi GA, Noureddini M, Mirhashemi SM, Mokhtari R, Shoferpour M. Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur J Pharmacol. 2014;723:202-206. DOI: 10.1016/j.ejphar.2013.11.033.

Leal LK, Ferreira AA, Bezerra GA, Matos FJ, Viana GS. Antinociceptive, anti-inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: a comparative study. J Ethnopharmacol. 2000;70(2):151-159. DOI: 10.1016/S0378-8741(99)00165-8.

McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA. 2007;104(33):13525-13530. DOI: 10.1073/pnas.0705924104.

Sankar P, Telang AG, Ramya K, Vijayakaran K, Kesavan M, Sarkar SN. Protective action of curcumin and nano-curcumin against arsenic-induced genotoxicity in rats in vivo. Mol Biol Rep. 2014;41(11):7413-7422. DOI: 10.1007/s11033-014-3629-0.

Wani TA, Kumar D, Prasad R, Verma PK, Sardar KK, Tandan SK, et al. Analgesic activity of the ethanolic extract of Shorea robusta resin in experimental animals. Indian J Pharmacol. 2012;44(4): 493-499. DOI: 10.4103/0253-7613.99322.

Han YK, Lee SH, Jeong HJ, Kim MS, Yoon MH, Kim WM. Analgesic effects of intrathecal curcumin in the rat formalin test. Korean J Pain. 2012;25(1):1-6. DOI: 10.3344/kjp.2012.25.1.1.

Ju J, Shin JY, Yoon JJ, Yin M, Yoon MH. Differential expression of spinal γ-aminobutyric acid and opioid receptors modulates the analgesic effects of intrathecal curcumin on postoperative/inflammatory pain in rats. Anesth Pain Med. 2018;13(1):82-92. DOI: 10.17085/apm.2018.13.1.82.

Xie W, Xie W, Kang Z, Jiang C, Liu N. Administration of curcumin alleviates neuropathic pain in a rat model of brachial plexus avulsion. Pharmacology. 2019;103(5-6):324-332. DOI: 10.1159/000496928.

Al-Rohaimi AH. Comparative anti-inflammatory potential of crystalline and amorphous nano curcumin in topical drug delivery. J Oleo Sci. 2015;64(1):27-40. DOI: 10.5650/jos.ess14175.

Lazarevic-Pasti T, Leskovac A, Vasic V. Myeloperoxidase inhibitors as potential drugs. Curr Drug Metab. 2015;16(3):168-190.DOI: 10.2174/138920021603150812120640.

Salh B, Assi K, Templeman V, Parhar K, Owen D, Gomez-Munoz A, et al. Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol. 2003;285(1):G235-G243. DOI: 10.1152/ajpgi.00449.2002.

Suresh S, Sankar P, Telang AG, Kesavan M, Sarkar SN. Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing NF‑κB signaling and inflammation. Int Immunopharmacol. 2018;65:408-412.DOI: 10.1016/j.intimp.2018.10.034.

Li G, Chen JB, Wang C, Xu Z, Nie H, Qin XY, et al. Curcumin protects against acetaminophen-induced apoptosis in hepatic injury. World J Gastroenterol. 2013;19(42):7440-7446. DOI: 10.3748/wjg.v19.i42.7440.

Mohajeri M, Sadeghizadeh M, Najafi F, Javan M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology. 2015;99:156-167. DOI: 10.1016/j.neuropharm.2015.07.013.

Al-Bishri WM. Hepato therapeutic efficacy of native curcumim and nano-curcumin: a novel therapy against hyperthyroidism induced liver oxidative and inflammatory damage in rats. Int J Adv Res Biol Sci. 2017;4(12):86-97. DOI: 10.22192/ijarbs.2017.04.12.009.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.