Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metformin
Abstract
Background and purpose: Primary and metastatic breast cancers still represent an unmet clinical need for improved chemotherapy and hormone therapy. Considerable attention has been paid to natural anticancer compounds, especially lignans. The study aimed to evaluate the activity of several lignans against breast cancer cells and assess the effect of leading lignans on signaling pathways in combination with metformin.
Experimental approach: Human breast cancer cell lines MCF7 (hormone-dependent), MDA-MB-231, and SKBR3 (hormone-independent) were used. A hormone-resistant MCF7/hydroxytamoxifen (HT) subline was obtained by long-term cultivation of the MCF7 line with hydroxytamoxifen. Antiproliferative activity was assessed by the MTT test; the expression of signaling pathway proteins was evaluated by immunoblotting analysis.
Findings/Results: We evaluated the antiproliferative activity of lignans in breast cancer cells with different levels of hormone dependence and determined the relevant IC50 values. Honokiol was chosen as the leading compound, and its IC50 ranged from 12 to 20 μM, whereas for other tested lignans, the IC50 exceeded 50 μM. The accumulation of cleaved PARP and a decrease in the expression of Bcl-2 and ERα in MCF7/HT were induced following the combination of honokiol with metformin.
Conclusions and implications: Honokiol demonstrated significant antiproliferative activity against both hormone-dependent breast cancer cells and lines with primary and acquired hormone resistance. The combination of honokiol with metformin is considered an effective approach to induce death in hormone-resistant cells. Honokiol is of interest as a natural compound with antiproliferative activity against breast cancers, including resistant tumors.
Highlights
Mikhaevich: PubMed , Google Scholar
Keywords
Full Text:
PDFReferences
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309. DOI: 10.1038/s41586-019-1730-1.
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339-348. DOI: 10.15171/apb.2017.041.
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF, et al. Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol. 2022;12:891652,1-38. DOI: 10.3389/fonc.2022.891652.
Casas A, Di Venosa G, Hasan T, Al B. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011;18(16):2486-2515. DOI: 10.2174/092986711795843272.
Arzi L, Mollaei H, Hoshyar R. Countering triple negative breast cancer via impeding Wnt/β-catenin signaling, a phytotherapeutic approach. Plants (Basel). 2022;11(17):2191,1-24. DOI: 10.3390/plants11172191.
Mottaghi S, Abbaszadeh H. Natural lignans honokiol and magnolol as potential anticarcinogenic and anticancer agents. A comprehensive mechanistic review. Nutr Cancer. 2022;74(3):761-778. DOI: 10.1080/01635581.2021.1931364.
Perera WH, Scherbakov AM, Buravchenko GI, Mikhaevich EI, Leitão SG, Cos P, et al. In vitro pharmacological screening of essential oils from Baccharis parvidentata and Lippia origanoides growing in Brazil. Molecules. 2022;27(6):1926,1-11. DOI: 10.3390/molecules27061926.
Monzote L, Scherbakov AM, Scull R, Satyal P, Cos P, Shchekotikhin AE, et al. Essential oil from Melaleuca leucadendra: antimicrobial, antikinetoplastid, antiproliferative and cytotoxic assessment. Molecules. 2020;25(23):5514,1-13. DOI: 10.3390/molecules25235514.
Teodor ED, Moroeanu V, Radu GL. Lignans from medicinal plants and their anticancer effect. Mini Rev Med Chem. 2020;20(12):1083-1090. DOI: 10.2174/1389557520666200212110513.
Pettit GR, Meng Y, Gearing RP, Herald DL, Pettit RK, Doubek DL, et al. Antineoplastic agents. 522. Hernandia peltata (Malaysia) and Hernandia nymphaeifolia (Republic of Maldives). J Nat Prod. 2004;67(2):214-220. DOI: 10.1021/np030125s.
Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, et al. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem. 2007;55(4):1337-1346. DOI: 10.1021/jf0629134.
Dikshit A, Gomes Filho MA, Eilati E, McGee S, Small C, Gao C, et al. Flaxseed reduces the pro-carcinogenic micro-environment in the ovaries of normal hens by altering the PG and oestrogen pathways in a dose-dependent manner. Br J Nutr. 2015;113(9):1384-1395. DOI: 10.1017/S000711451500029X.
Williams D, Verghese M, Walker LT, Boateng J, Shackelford L, Chawan CB. Flax seed oil and flax seed meal reduce the formation of aberrant crypt foci (ACF) in azoxymethane-induced colon cancer in Fisher 344 male rats. Food Chem Toxicol. 2007;45(1):153-159. DOI: 10.1016/j.fct.2006.08.014.
Pietrofesa RA, Velalopoulou A, Arguiri E, Menges CW, Testa JR, Hwang WT, et al. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice. Carcinogenesis. 2016;37(2):177-187. DOI: 10.1093/carcin/bgv174.
Mueller SO, Simon S, Chae K, Metzler M, Korach KS. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci. 2004;80(1):14-25. DOI: 10.1093/toxsci/kfh147.
Saggar JK, Chen J, Corey P, Thompson LU. Dietary flaxseed lignan or oil combined with tamoxifen treatment affects MCF-7 tumor growth through estrogen receptor- and growth factor-signaling pathways. Mol Nutr Food Res. 2010;54(3):415-425. DOI: 10.1002/mnfr.200900068.
Evans BA, Griffiths K, Morton MS. Inhibition of 5 alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J Endocrinol. 1995;147(2):295-302. DOI: 10.1677/joe.0.1470295.
Schöttner M, Spiteller G, Gansser D. Lignans interfering with 5 alpha-dihydrotestosterone binding to human sex hormone-binding globulin. J Nat Prod. 1998;61(1):119-121. DOI: 10.1021/np9701743.
Carreau C, Flouriot G, Bennetau-Pelissero C, Potier M. Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERalpha transcriptional activation in human breast cancer cells. J Steroid Biochem Mol Biol. 2008;110(1-2):176-185. DOI: 10.1016/j.jsbmb.2008.03.032.
Xiong XY, Hu XJ, Li Y, Liu CM. Inhibitory effects of enterolactone on growth and metastasis in human breast cancer. Nutr Cancer. 2015;67(8):1324-1332. DOI: 10.1080/01635581.2015.1082113.
Chen LH, Fang J, Sun Z, Li H, Wu Y, Demark-Wahnefried W, et al. Enterolactone inhibits insulin-like growth factor-1 receptor signaling in human prostatic carcinoma PC-3 cells. J Nutr. 2009;139(4):653-659. DOI: 10.3945/jn.108.101832.
Chikara S, Lindsey K, Borowicz P, Christofidou-Solomidou M, Reindl KM. Enterolactone alters FAK-Src signaling and suppresses migration and invasion of lung cancer cell lines. BMC Complement Altern Med. 2017;17(1):30,1-12. DOI: 10.1186/s12906-016-1512-3.
Bergman Jungeström M, Thompson LU, Dabrosin C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res. 2007;13(3):1061-1067. DOI: 10.1158/1078-0432.CCR-06-1651.
Chen LH, Fang J, Li H, Demark-Wahnefried W, Lin X. Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway. Mol Cancer Ther. 2007;6(9):2581-2590. DOI: 10.1158/1535-7163.
Peuhu E, Rivero-Müller A, Stykki H, Torvaldson E, Holmbom T, Eklund P, et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene. 2010;29(6):898-908. DOI: 10.1038/onc.2009.386.
Danbara N, Yuri T, Tsujita-Kyutoku M, Tsukamoto R, Uehara N, Tsubura A. Enterolactone induces apoptosis and inhibits growth of Colo 201 human colon cancer cells both in vitro and in vivo. Anticancer Res. 2005;25(3B):2269-2276. PMID: 16158974.
Chen J, Thompson LU. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res Treat. 2003;80(2):163-170. DOI: 10.1023/a:1024513815374.
Mali AV, Wagh UV, Hegde MV, Chandorkar SS, Surve SV, Patole MV. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines. Indian J Cancer. 2012;49(1):181-187. DOI: 10.4103/0019-509x.98948.
Scherbakov AM, Basharina AA, Sorokin DV, Mikhaevich EI, Mizaeva IE, Mikhaylova AL, et al. Targeting hormone-resistant breast cancer cells with docetaxel: a look inside the resistance. Cancer Drug Resist. 2023;6(1):103-115. DOI: 10.20517/cdr.2022.96.
Zapevalova MV, Shchegravina ES, Fonareva IP, Salnikova DI, Sorokin DV, Scherbakov AM, et al. Synthesis, molecular docking, in vitro and in vivo studies of novel dimorpholinoquinazoline-based potential inhibitors of PI3K/Akt/mTOR Pathway. Int J Mol Sci. 2022;23(18):10854,1-26. DOI: 10.3390/ijms231810854.
Mruk DD, Cheng CY. Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis. 2011;1(2):121-122. DOI: 10.4161/spmg.1.2.16606.
Pan J, Lee Y, Cheng G, Zielonka J, Zhang Q, Bajzikova M, et al. Mitochondria-targeted honokiol confers a striking inhibitory effect on lung cancer via inhibiting complex I activity. iScience. 2018; 3:192-207. DOI: 10.1016/j.isci.2018.04.013.
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 2014;3:e02242,1-18. DOI: 10.7554/eLife.02242.
Novik AV, Protsenko SA, Baldueva IA, Berstein LM, Anisimov VN, Zhuk IN, et al. Melatonin and metformin failed to modify the effect of dacarbazine in melanoma. Oncologist. 2021;26(5):364-e734. DOI: 10.1002/onco.13761.
Shchegolev Y, Sorokin D, Scherbakov A, Shunaev A, Andreeva O, Mikhaevich E, et al. Upregulation of Akt/Raptor signaling is associated with rapamycin resistance of breast cancer cells. Chem Biol Interact. 2020;330:109243,1-11. DOI: 10.1016/j.cbi.2020.109243.
Berstein LM. New developments of metformin in the clinical cancer area. Oncotarget. 2018;9(96):36820-36821. DOI: 10.18632/oncotarget.26418.
Mu W, Jiang Y, Liang G, Feng Y, Qu F. Metformin: a promising antidiabetic medication for cancer treatment. Curr Drug Targets. 2023;24(1):41-54. DOI: 10.2174/1389450124666221104094918.
Sorokin D, Shchegolev Y, Scherbakov A, Ryabaya O, Gudkova M, Berstein L, et al. Metformin restores the drug sensitivity of MCF-7 cells resistant derivates via the cooperative modulation of growth and apoptotic-related pathways. Pharmaceuticals (Basel) .2020;13(9):206,1-16. DOI: 10.3390/ph13090206.
Moradi-Gharibvand N, Setayeshmehr M, Kazemi M, Safaee A, Khorsandi LS, Nejad DB, et al. Pomegranate seed extract enhances the inhibitory effect of adipose-derived mesenchymal stem cells on breast cancer cell line in co-culture conditions. Res Pharm Sci. 2022;17(4):372-382. DOI: 10.4103/1735-5362.350238.
Shakya AK, Naik RR. The chemotherapeutic potentials of compounds isolated from the plant, marine, fungus, and microorganism: their mechanism of action and prospects. J Trop Med. 2022;2022:5919453,1-17. DOI: 10.1155/2022/5919453.
Ghanbari A, Jalili C, Salahshoor MR, Javanmardy S, Ravankhah S, Akhshi N. Harmine mitigates cisplatin-induced renal injury in male mice through antioxidant, anti-inflammatory, and anti-apoptosis effects. Res Pharm Sci. 2022;17(4):417-427. DOI: 10.4103/1735-5362.350242.
Wang X, Liu Q, Fu Y, Ding RB, Qi X, Zhou X, et al. Magnolol as a potential anticancer agent: a proposed mechanistic insight. Molecules. 2022;27(19):6441,1-18. DOI: 10.3390/molecules27196441.
Mukhija M, Joshi BC, Bairy PS, Bhargava A, Sah AN. Lignans: a versatile source of anticancer drugs. Beni Suef Univ J Basic Appl Sci. 2022;11(1):76,1-34. DOI: 10.1186/s43088-022-00256-6.
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, et al. Honokiol for cancer therapeutics: a traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192-209.DOI: 10.1016/j.phrs.2019.04.004.
Lan KL, Lan KH, Sheu ML, Chen MY, Shih YS, Hsu FC, et al. Honokiol inhibits hypoxia-inducible factor-1 pathway. Int J Radiat Biol. 2011;87(6):579-590. DOI: 10.3109/09553002.2011.568572.
Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med. 2018;22(3):1894-1908. DOI: 10.1111/jcmm.13474
Cheng S, Castillo V, Welty M, Eliaz I, Sliva D. Honokiol inhibits migration of renal cell carcinoma through activation of RhoA/ROCK/MLC signaling pathway. Int J Oncol. 2016;49(4):1525-1530. DOI: 10.3892/ijo.2016.3663.
Singh T, Gupta NA, Xu S, Prasad R, Velu SE, Katiyar SK. Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget. 2015;6(25):21268-21282. DOI: 10.18632/oncotarget.4178.
Ahn KS, Sethi G, Shishodia S, Sung B, Arbiser JL, Aggarwal BB. Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-kappaB activation pathway. Mol Cancer Res. 2006;4(9):621-633. DOI: 10.1158/1541-7786.MCR-06-0076.
Lee JS, Sul JY, Park JB, Lee MS, Cha EY, Ko YB. Honokiol induces apoptosis and suppresses migration and invasion of ovarian carcinoma cells via AMPK/mTOR signaling pathway. Int J Mol Med. 2019;43(5):1969-1978. DOI: 10.3892/ijmm.2019.4122.
Ren C, Wang J, Tan Y, Guo M, Guo J, Liu Y, et al. Synthesis, characterization and biological evaluation of magnolol and honokiol derivatives with 1,3,5-triazine of metformin cyclization. Molecules. 2020;25(24):5779,1-10. DOI: 10.3390/molecules25245779.
Alabsi AM, Lim KL, Paterson IC, Ali-Saeed R, Muharram BA. Cell cycle arrest and apoptosis induction via modulation of mitochondrial integrity by Bcl-2 family members and caspase dependence in dracaena cinnabari-treated H400 human oral squamous cell carcinoma. Biomed Res Int. 2016;2016:4904016.DOI: 10.1155/2016/4904016.
Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S, Zakaria Z. Growth inhibition of human gynecologic and colon cancer cells by Phyllanthus watsonii through apoptosis induction. PloS One. 2012;7(4):e34793,1-15.DOI: 10.1371/journal.pone.0034793.
Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S. The cytotoxic effect and glucose uptake modulation of Baeckea frutescens on breast cancer cells. BMC complementary and alternative medicine. 2019;19(1):220. DOI: 10.1186/s12906-019-2628-z.
Woo SM, Seo SU, Kubatka P, Min KJ, Kwon TK. Honokiol enhances TRAIL-mediated apoptosis through STAMBPL1-induced survivin and c-FLIP degradation. Biomolecules. 2019;9(12):838,1-14. DOI: 10.3390/biom9120838.
Wu GJ, Yang ST, Chen RM. Major contribution of caspase-9 to honokiol-induced apoptotic insults to human drug-resistant glioblastoma cells. Molecules. 2020;25(6):1450,1-15. DOI: 10.3390/molecules25061450.
Park EJ, Min HY, Chung HJ, Hong JY, Kang YJ, Hung TM, et al. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett. 2009;277(2):133-140. DOI: 10.1016/j.canlet.2008.11.029.
Avtanski DB, Nagalingam A, Bonner MY, Arbiser JL, Saxena NK, Sharma D. Honokiol inhibits epithelial-mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E-cadherin axis. Mol Oncol. 2014;8(3):565-580. DOI: 10.1016/j.molonc.2014.01.004.
Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med. 2012;12(10):1244-1252. DOI: 10.2174/156652412803833508.
Crane C, Panner A, Pieper RO, Arbiser J, Parsa AT. Honokiol-mediated inhibition of PI3K/mTOR pathway: a potential strategy to overcome immunoresistance in glioma, breast, and prostate carcinoma without impacting T cell function. J Immunother. 2009;32(6):585-592. DOI: 10.1097/CJI.0b013e3181a8efe6.
Prasad R, Katiyar SK. Honokiol, an active compound of magnolia plant, inhibits growth, and progression of cancers of different organs. Adv Exp Med Biol. 2016;928:245-265. DOI: 10.1007/978-3-319-41334-1_11.
Yan B, Peng ZY. Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line. Int J Clin Exp Med. 2015;8(4):5454-5461. PMID: 26131123.
Hahm ER, Singh KB, Singh SV. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells. Cell Cycle. 2016;15(17):2309-2320. DOI: 10.1080/15384101.2016.1201253.
Skolastika S, Hanif N, Ikawati M, Hermawan A. Comprehensive computational analysis of honokiol targets for cell cycle inhibition and immunotherapy in metastatic breast cancer stem cells. Evid Based Complement Alternat Med. 2022;2022:4172531,1-18. DOI: 10.1155/2022/4172531.
Sabarwal A, Wedel J, Liu K, Zurakowski D, Chakraborty S, Flynn E, et al. A combination therapy using an mTOR inhibitor and honokiol effectively induces autophagy through the modulation of AXL and rubicon in renal cancer cells and restricts renal tumor growth following organ transplantation. Carcinogenesis. 2022;43(4):360-370. DOI: 10.1093/carcin/bgab126.
Yi X, Lou L, Wang J, Xiong J, Zhou S. Honokiol antagonizes doxorubicin resistance in human breast cancer via miR-188-5p/FBXW7/c-Myc pathway. Cancer Chemother Pharmacol. 2021;87(5):647-656. DOI: 10.1007/s00280-021-04238-w.
Li XQ, Ren J, Wang Y, Su JY, Zhu YM, Chen CG, et al. Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol (Dordr). 2021;44(1):135-150. DOI: 10.1007/s13402-020-00557-x.
Zang H, Qian G, Arbiser J, Owonikoko TK, Ramalingam SS, Fan S, et al. Overcoming acquired resistance of EGFR-mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Mol Oncol. 2020;14(4):882-895. DOI: 10.1002/1878-0261.12645.
Hermawan A, Putri H, Hanif N, Fatimah N, Prasetio HH. Identification of potential target genes of honokiol in overcoming breast cancer resistance to tamoxifen. Front Oncol. 2022;12:1019025,1-18. DOI: 10.3389/fonc.2022.1019025.
Yu CP, Li PY, Chen SY, Lin SP, Hou YC. Magnolol and honokiol inhibited the function and expression of BCRP with mechanism exploration. Molecules. 2021;26(23):7390,1-10. DOI: 10.3390/molecules26237390.
Eliaz I, Weil E. Intravenous honokiol in drug-resistant cancer: two case reports. Integr Cancer Ther. 2020;19:1534735420922615,1-5. DOI: 10.1177/1534735420922615.
Shen L, Zhang F, Huang R, Yan J, Shen B. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition. Oncol Lett. 2017;14(4):4294-4300. DOI: 10.3892/ol.2017.6665.
Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, et al. Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol. 2004;10(23):3459-3463. DOI: 10.3748/wjg.v10.i23.3459.
Liu SH, Lee WJ, Lai DW, Wu SM, Liu CY, Tien HR, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9(4):834-849. DOI: 10.1016/j.molonc.2014.12.009.
Wynn ML, Consul N, Merajver SD, Schnell S. Inferring the effects of honokiol on the Notch signaling pathway in SW480 colon cancer cells. Cancer Inform. 2014;13(Suppl 5):1-12. DOI: 10.4137/CIN.S14060.
Lai YJ, Lin CI, Wang CL, Chao JI. Expression of survivin and p53 modulates honokiol-induced apoptosis in colorectal cancer cells. J Cell Biochem. 2014;115(11):1888-1899. DOI: 10.1002/jcb.24858.
Liu SH, Wang KB, Lan KH, Lee WJ, Pan HC, Wu SM, et al. Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PLoS One. 2012;7(8):e43711,1-18. DOI: 10.1371/journal.pone.0043711.
Sheu ML, Liu SH, Lan KH. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS ONE 2007;2(10):e1096,1-11. DOI: 10.1371/journal.pone.0001096.
Lin CJ, Chang YA, Lin YL, Liu SH, Chang CK, Chen RM. Preclinical effects of honokiol on treating glioblastoma multiforme via G1 phase arrest and cell apoptosis. Phytomedicine. 2016;23(5):517-527. DOI: 10.1016/j.phymed.2016.02.021.
Lin JW, Chen JT, Hong CY, Lin YL, Wang KT, Yao CJ, et al. Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol. 2012;14(3): 302-314. DOI: 10.1093/neuonc/nor217.
Chen XR, Lu R, Dan HX, Liao G, Zhou M, Li XY, et al. Honokiol: a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells. Int J Oral Sci. 2011;3(1):34-42. DOI: 10.4248/IJOS11014.
Cheng S, Castillo V, Eliaz I, Sliva D. Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling. Int J Oncol. 2015;46(6):2293-2298. DOI: 10.3892/ijo.2015.2950.
Mędra A, Witkowska M, Majchrzak A, Cebula-Obrzut B, Bonner MY, Robak T, et al. Pro-apoptotic activity of new honokiol/triphenylmethane analogues in B-cell lymphoid malignancies. Molecules. 2016;21(8):995,1-12. DOI: 10.3390/molecules21080995.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.