PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities
Abstract
Background and purpose: Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering.
Experimental approach: In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days.
Findings/Results: The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction.
Conclusion and implications: PCL/Ag scaffolds can be considered appropriate for tissue-engineering applications.
Highlights
Abbasali Rabiei: PubMed , Google Scholar
Keywords
Full Text:
PDFReferences
Mirmusavi MH, Ahmadian M, Karbasi S. Polycaprolactone-chitosan/multi-walled carbon nanotube: A highly strengthened electrospun nanocomposite scaffold for cartilage tissue engineering. Int J Biol Macromol. 2022;209:1801-1814. DOI: 10.1016/j.ijbiomac.2022.04.152.
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83,1-35. DOI: 10.3389/fbioe.2020.00083.
O'brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95. DOI: 10.1016/S1369-7021(11)70058-X.
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, et al. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces. 2022:112661. DOI: 10.1016/j.colsurfb.2022.112661
Patil S, Singh N. Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation. Colloids Surf B Biointerfaces. 2019;176:150-155. DOI: 10.1016/j.colsurfb.2018.12.067.
Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Tissue engineering: dentin-pulp complex regeneration approaches (a review). Tissue Cell. 2017;49(5):552-564. DOI: 10.1016/j.tice.2017.07.002.
Zhou X, Zhou G, Junka R, Chang N, Anwar A, Wang H, et al. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Colloids Surf B Biointerfaces. 2021;197:111420,1-37. DOI: 10.1016/j.colsurfb.2020.111420.
Kumar A, Lee Y, Kim D, Rao KM, Kim J, Park S, et al. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol. 2017;95:962-973. DOI: 10.1016/j.ijbiomac.2016.10.085.
Felfel RM, Gupta D, Zabidi AZ, Prosser A, Scotchford CA, Sottile V, et al. Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly (D,L-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA. Mater Des. 2018;160:455-467. DOI: 10.1016/j.matdes.2018.09.035.
Movahedi M, Karbasi S. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. Int J Biol Macromol. 2022;214:301-311. DOI: 10.1016/j.ijbiomac.2022.06.072.
Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59. DOI: 10.1016/j.actbio.2018.08.026.
Jumat MA, Chevallier P, Mantovani D, Copes F, Razak SIA, Saidin S. Three-dimensional printed biodegradable poly (L-lactic acid)/(poly (D-lactic acid) scaffold as an intervention of biomedical substitute. Polym Plast Tech Mat. 2021;60(9): 1005-1015. DOI: 10.1080/25740881.2021.1876879.
Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019;35:1286-1296. DOI: 10.1016/j.promfg.2019.06.089.
Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 2014;6(3):035001,1-11. DOI: 10.1088/1758-5082/6/3/035001.
Honarvar A, Karbasi S, Hashemibeni B, Setayeshmehr M, Kazemi M, Valiani A. Effects of cartilage acellular solubilised ECM on physicomechanical and biological properties of polycaprolactone/fibrin hybrid scaffold fabricated by 3D-printing and salt-leaching methods. Mater Technol. 2022;37(3):204-212. DOI: 10.1080/10667857.2020.1824148.
Yang Y, Wu H, Fu Q, Xie X, Song Y, Xu M, et al. 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration. Mater Des. 2022;214:110394,1-10. DOI: 10.1016/j.matdes.2022.110394.
Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. Int J Biol Macromol. 2019;122:1152-1162. DOI: 10.1016/j.ijbiomac.2018.09.065.
Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Synthetic-based blended electrospun scaffolds in tissue engineering applications. J Mater Sci. 2022;57:4020-4079. DOI: 10.1007/s10853-021-06826-w.
Yazdi MK, Taghizadeh A, Taghizadeh M, Stadler FJ, Farokhi M, Mottaghitalab F, et al. Agarose-based biomaterials for advanced drug delivery. J Control Release. 2020;326:523-543. DOI: 10.1016/j.jconrel.2020.07.028.
Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66-84. DOI: 10.1016/j.carbpol.2018.01.060.
Guastaferro M, Reverchon E, Baldino L. Agarose, alginate and chitosan nanostructured aerogels for pharmaceutical applications: a short review. Front Bioeng Biotechnol. 2021;9:688477,1-10. DOI: 10.3389/fbioe.2021.688477.
Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, et al. 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater. 2017;64:377-388. DOI: 10.1016/j.actbio.2017.09.031.
Park SA, Lee SJ, Seok JM, Lee JH, Kim WD, Kwon IK. Fabrication of 3D printed PCL/PEG polyblend scaffold using rapid prototyping system for bone tissue engineering application. J Bionic Eng. 2018;15(3):435-442. DOI: 10.1007/s42235-018-0034-8.
Guo T, Lembong J, Zhang LG, Fisher JP. Three-dimensional printing articular cartilage: recapitulating the complexity of native tissue. Tissue Eng Part B Rev. 2017;23(3):225-236. DOI: 10.1089/ten.TEB.2016.0316.
Arnott S, Fulmer A, Scott WE, Dea ICM, Moorhouse R, Rees DA. The agarose double helix and its function in agarose gel structure. J Mol Biol. 1974;90(2):269-84. DOI: 10.1016/0022-2836(74)90372-6.
Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002,1-11. DOI: 10.1088/1758-5090/8/4/045002.
Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym. 2020;248:116776,1-14. DOI: 10.1016/j.carbpol.2020.116776.
Aaron F, Clare M, Bastian B, Fredrick K, Tim D, Aurelien F. Dehydration-induced folding of poly (ε-caprolactone)-agarose hydrogel composites. Eur Polym J. 2019;117:159-164. DOI: 10.1016/j.eurpolymj.2019.04.005.
Nikbakht M, Karbasi S, Rezayat SM. Biological evaluation of the effects of hyaluronic acid on poly (3-hydroxybutyrate) based electrospun nanocomposite scaffolds for cartilage tissue engineering application. Mater Technol. 2020;35(3):141-151. DOI: 10.1080/10667857.2019.1659535.
Rabionet M, Yeste M, Puig T, Ciurana J. Electrospinning PCL scaffolds manufacture for three-dimensional breast cancer cell culture. Polymers. 2017;9(8):328,3-15. DOI: 10.3390/polym9080328.
Zadehnajar P, Akbari B, Karbasi S, Mirmusavi MH. Preparation and characterization of poly ε-caprolactone-gelatin/multi-walled carbon nanotubes electrospun scaffolds for cartilage tissue engineering applications. Int J Polym Mater. 2020;69(5):326-337. DOI: 10.1080/00914037.2018.1563088.
Cho YS, Hong MW, Quan M, Kim SY, Lee SH, Lee SJ, et al. Assessments for bone regeneration using the polycaprolactone SLUP (salt‐leaching using powder) scaffold. J Biomed Mater Res A. 2017;105(12): 3432-3444. DOI: 10.1002/jbm.a.36196.
Naghieh S, Karamooz-Ravari MR, Sarker M, Karki E, Chen X. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches. J Mech Behav Biomed Mater. 2018;80:111-118. DOI: 10.1016/j.jmbbm.2018.01.034.
Kanimozhi K, Basha SK, Kumari VS, Kaviyarasu K, Maaza M. In vitro cytocompatibility of chitosan/PVA/ methylcellulose-nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl Surf Sci. 2018;449:574-583. DOI: 10.1016/j.apsusc.2017.11.197.
Saudi S, Bhattarai SR, Adhikari U, Khanal S, Sankar J, Aravamudhan S, et al. Nanonet-nano fiber electrospun mesh of PCL-chitosan for controlled and extended release of diclofenac sodium. Nanoscale. 2020;12(46):23556-23569. DOI: 10.1039/D0NR05968D.
Jing X, Mi HY, Cordie T, Salick M, Peng XF, Turng LS. Fabrication of porous poly (ε-caprolactone) scaffolds containing chitosan nanofibers by combining extrusion foaming, leaching, and freeze-drying methods. Ind Eng Chem Res. 2014;53(46):17909-17918. DOI: 10.1021/ie5034073.
Xue D, Zhang J, Wang Y, Mei D. Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness. ACS Biomater Sci Eng. 2019;5(9):4825-4833. DOI: 10.1021/acsbiomaterials.9b00696.
Asgarpour R, Masaeli E, Kermani S. Development of meniscus‐inspired 3D‐printed PCL scaffolds engineered with chitosan/extracellular matrix hydrogel. Polym Adv Technol. 2021;32(12):4721-4732. DOI: 10.1002/pat.5465.
Moradi-Gharibvand N, Setayeshmehr M, Kazemi M, Safaee A, Khorsandi LS, Nejad DB, et al. Pomegranate seed extract enhances the inhibitory effect of adipose-derived mesenchymal stem cells on breast cancer cell line in co-culture conditions. Res Pharm Sci. 2022;17(4):372-382. DOI: 10.4103/1735-5362.350238.
Teimourinejad A, Hashemibeni B, Salehi H, Mostafavi FS, Kazemi M, Bahramian H. Chondrogenic activity of two herbal products; pomegranate fruit extract and avocado/soybean unsaponifiable. Res Pharm Sci. 2020;15(4): 358-366. DOI: 10.4103/1735-5362.293514.
Hashemibeni B, Valiani A, Esmaeli M, Kazemi M, Aliakbari M, Iranpour FG. Comparison of the efficacy of piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds. Iran J Basic Med Sci. 2018;21(2):212-218. DOI: 10.22038/IJBMS.2018.24693.6136.
Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym. 2014;114:213-221. DOI: 10.1016/j.carbpol.2014.08.008.
Wu Y, Sriram G, Fawzy AS, Fuh JY, Rosa V, Cao T, et al. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts. J Biomater Appl. 2016;31(2):181-192. DOI: 10.1177/088532821665253.
Li D, Chen W, Sun B, Li H, Wu T, Ke Q, et al. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids Surf B Biointerfaces. 2016;146:632-641. DOI: 10.1016/j.colsurfb.2016.07.009.
Sivashankari PR, Prabaharan M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. Int J Biol Macromol. 2020;146:222-231. DOI: 10.1016/j.ijbiomac.2019.12.219.
Hu Z, Hong P, Liao M, Kong S, Huang N, Ou C, et al. Preparation and characterization of chitosan-agarose composite films. Materials. 2016;9(10):816,1-9. DOI: 10.3390/ma9100816.
Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci. 2004;273(2):381-387. DOI: 10.1016/j.jcis.2004.02.001.
Fan Z, Wang J, Liu F, Nie Y, Ren L, Liu B. A new composite scaffold of bioactive glass nanoparticles/graphene: synchronous improvements of cytocompatibility and mechanical property. Colloids Surf B Biointerfaces. 2016;145:438-446. DOI: 10.1016/j.colsurfb.2016.05.026.
Mohammadalipour M, Behzad T, Karbasi S, Mohammadalipour Z. Optimization and characterization of polyhydroxybutyrate/lignin electro-spun scaffolds for tissue engineering applications. Int J Biol Macromol. 2022;218: 317-334. DOI: 10.1016/j.ijbiomac.2022.07.139.
Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK. 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412,1-9. DOI: 10.1038/s41598-017-13838-7.
Roberson DA, Perez ART, Shemelya CM, Rivera A, MacDonald E, Wicker RB. Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test specimens. Addit Manuf. 2015;7:1-11. DOI: 10.1016/j.addma.2015.05.002.
Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PloS One. 2014;9(9):e108252,1-14. DOI: 10.1371/journal.pone.0108252.
Xiao X, Jiang X, Yang S, Lu Z, Niu C, Xu Y, et al. Solvent evaporation induced fabrication of porous polycaprolactone scaffold via low-temperature 3D printing for regeneration medicine researches. Polymer. 2021;217:123436,1-13. DOI: 10.1016/j.polymer.2021.123436.
Sheshadri P, Shirwaiker RA. Characterization of material-process-structure interactions in the 3D bioplotting of polycaprolactone. 3D Print Addit Manuf. 2015;2(1):20-31. DOI: 10.1089/3dp.2014.0025.
Altan M, Eryildiz M, Gumus B, Kahraman Y. Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength. Mater Test. 2018;60(5):471-477. DOI: 10.3139/120.111178.
Soufivand AA, Abolfathi N, Hashemi A, Lee SJ. The effect of 3D printing on the morphological and mechanical properties of polycaprolactone filament and scaffold. Polym Adv Technol. 2020;31(5):1038-1046. DOI: 10.1002/pat.4838.
Žarko J, Vladić G, Pál M, Dedijer S. Influence of printing speed on production of embossing tools using FDM 3D printing technology. J Graph Eng Des. 2017;8(1):19-27. DOI: 10.24867/JGED-2017-1-019.
Kowalczyk P, Trzaskowska P, Łojszczyk I, Podgórski R, Ciach T. Production of 3D printed polylactide scaffolds with surface grafted hydrogel coatings. Colloids Surf B Biointerfaces. 2019;179:136-142. DOI: 10.1016/j.colsurfb.2019.03.069.
Lv K, Zhu J, Zheng S, Jiao Z, Nie Y, Song F, et al. Evaluation of inhibitory effects of geniposide on a tumor model of human breast cancer based on 3D printed Cs/Gel hybrid scaffold. Mater Sci Eng C Mater Biol Appl. 2021;119:111509,1-10. DOI: 10.1016/j.msec.2020.111509.
Pan Z, Ding J. Poly (lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2(3):366-377. DOI: 10.1098/rsfs.2011.0123.
Ding Y, Li W, Correia A, Yang Y, Zheng K, Liu D, et al. Electrospun polyhydroxybutyrate/poly (ε-caprolactone)/sol-gel-derived silica hybrid scaffolds with drug releasing function for bone tissue engineering applications. ACS Appl Mater Interfaces. 2018;10(17):14540-14548. DOI: 10.1021/acsami.8b02656.
Azarudeen RS, Hassan MN, Yassin MA, Thirumarimurugan M, Muthukumarasamy N, Velauthapillai D, et al. 3D printable polycaprolactone-gelatin blends characterized for in vitro osteogenic potency. React Funct Polym. 2020;146:104445,1-24. DOI: 10.1016/j.reactfunctpolym.2019.104445.
Yetiskin B, Okay O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties. Int J Biol Macromol. 2019;122:1279-1289. DOI: 10.1016/j.ijbiomac.2018.09.087.
Munaz A, Vadivelu RK, John JS, Barton M, Kamble H, Nguyen N-T. Three-dimensional printing of biological matters. J Sci Adv Mater Dev. 2016;1(1):1-17. DOI: 10.1016/j.jsamd.2016.04.001.
Huang A, Peng X, Geng L, Zhang L, Huang K, Chen B, et al. Electrospun poly (butylene succinate)/cellulose nanocrystals bio-nanocomposite scaffolds for tissue engineering: preparation, characterization and in vitro evaluation. Polym Test. 2018;71:101-109. DOI: 10.1016/j.polymertesting.2018.08.027.
Lampin M, Warocquier‐Clérout R, Legris C, Degrange M, Sigot‐Luizard M. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36(1):99-108. DOI:10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E.
Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A. 2008;14(11):1787-1797. DOI: 10.1089/ten.tea.2007.0393.
Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B Appl Biomater. 2005;72(1):156-165. DOI: 10.1002/jbm.b.30128.
Kim YB, Kim GH. PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities. ACS Comb Sci. 2015;17(2):87-99. DOI: 10.1021/co500033h.
Buyuksungur S, Hasirci V, Hasirci N. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. J Biomed Mater Res A. 2021;109(12):2425-2437. DOI: 10.1002/jbm.a.37235.
Cakmak AM, Unal S, Sahin A, Oktar FN, Sengor M, Ekren N, et al. 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers. 2020;12(9):1962,1-14. DOI: 10.3390/polym12091962.
Gautam S, Chou C-F, Dinda AK, Potdar PD, Mishra NC. Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J Mater Sci. 2014;49(3):1076-1089. DOI: 10.1007/s10853-013-7785-8.
Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C. 2013;33(3):1228-1235. DOI: 10.1016/j.msec.2012.12.015.
Sánchez-Salcedo S, Nieto A, Vallet-Regí M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. J Chem Eng. 2008;137(1):62-71. DOI: 10.1016/j.cej.2007.09.011.
Moffat KL, Goon K, Moutos FT, Estes BT, Oswald SJ, Zhao X, et al. Composite cellularized structures created from an interpenetrating polymer network hydrogel reinforced by a 3D woven scaffold. Macromol Biosci. 2018;18(10):1800140,1-8. DOI: 10.1002/mabi.201800140.
Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication. 2019;11(2):025002,1-35. DOI: 10.1088/1758-5090/aaf707.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.