Lupeol attenuated the NAFLD and PCOS-induced metabolic, oxidative, hormonal, histopathological, and molecular injuries in mice
Abstract
Background and purpose: The current study aimed to study the therapeutic effects of lupeol as a nutritional triterpene on non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS) disorders in separate and concurrent models.
Experimental approach: This study was performed in three sets and each set contained 4 groups of female mice (n = 6), including control, NAFLD or PCOS and/or NAFLD/PCOS, lupeol, and metformin (MET). The treatment groups following the induction of disorders were treated with lupeol (40 mg/kg, orally) or MET (500 mg/kg, orally) for 28 days. The insulin resistance index and hormonal assessments were conducted on the collected serum samples. Moreover, oxidative stress biomarkers were measured in the liver and ovaries. Histopathological studies and ultimately any changes in the expression of androgen receptors, toll-like receptor (TLR)-2 and TLR-4 were analyzed.
Findings/Results: Results revealed that lupeol reduced significantly the insulin resistance index in NAFLD and NAFLD/PCOS-positive animals. Lupeol attenuated remarkably the PCOS and PCOS/NAFLD-elevated concentration of testosterone. lupeol recovered the metabolic disorders-induced oxidative stress and restored the disorders-depleted glutathione. The NAFLD/PCOS-induced hepatic damages such as microvesicular or macrovesicular steatosis and atretic follicles number in the ovary were attenuated in the lupeol-treated mice. Serum level of TNF-α was reduced and the expression of androgen receptors, TLR-4 and TLR-2 were downregulated in the lupeol-treated NAFLD/PCOS-positive animals.
Conclusions and implication: The results suggest that lupeol could be a novel nutraceutical for the treatment of metabolic disorders. Lupeol’s anti-metabolic disorders effects attribute to its anti-dyslipidemia, antioxidant, and anti-inflammatory properties.
Highlights
Hassan Malekinejad : PubMed , Google Scholar
Keywords
Full Text:
PDFReferences
Arshad T, Paik JM, Biswas R, Alqahtani SA, Henry L, Younossi ZM. Nonalcoholic fatty liver disease prevalence trends among adolescents and young adults in the United States, 2007‐2016. Hepatol Commun. 2021;5(10):1676-1688. DOI: 10.1002/hep4.1760.
Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl). 2009;87(7):679-695. DOI:10.1007/s00109-009-0464-1.
Vassilatou E. Nonalcoholic fatty liver disease and polycystic ovary syndrome. World J Gastroenterol. 2014;20(26):8351-8363. DOI: 10.3748/wjg.v20.i26.8351.
Chua AK, Azziz R, Goodarzi MO. Association study of CYP17 and HSD11B1 in polycystic ovary syndrome utilizing comprehensive gene coverage. Mol Hum Reprod. 2012;18(6):320-324. DOI: 10.1093/molehr/gas002.
Goodarzi MO, Louwers YV, Taylor KD, Jones MR, Cui J, Kwon S, et al. Replication of association of a novel insulin receptor gene polymorphism with polycystic ovary syndrome. Fertil Steril. 2011;95(5):1736-1741. DOI: 10.1016/j.fertnstert.2011.01.015.
Xita N, Tsatsoulis A. Fetal origins of the metabolic syndrome. Ann N Y Acad Sci. 2010;1205: 148-155. DOI: 10.1111/j.1749-6632.2010.05658.x.
De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 2016;14: article 38,1-17. DOI: 10.1186/s12958-016-0173-x.
Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am. 1999;28(2):361-378. DOI: 10.1016/S0889-8529(05)70074-8.
Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432:1027-1032. DOI: 10.1038/nature03047.
Marra F, Gastaldelli A, Baroni GS, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72-81.DOI: 10.1016/j.molmed.2007.12.003.
Zimmerman Y, Eijkemans MJC, Coelingh Bennink HJT, Blankenstein MA, Fauser BCJM. The effect of combined oral contraception on testosterone levels in healthy women: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(1):76-105. DOI: 10.1093/humupd/dmt038.
Kumarendran B, O’Reilly MW, Manolopoulos KN, Toulis KA, Gokhale KM, Sitch AJ, et al. Polycystic ovary syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in women: a longitudinal study based on a United Kingdom primary care database. PLoS Med. 2018;15(3):e1002542,1-20. DOI: 10.1371/journal.pmed.1002542.
Sharma N, Palia P, Chaudhary A, Shalini Verma K, Kumar I. A review on pharmacological activities of lupeol and its triterpene derivatives. J Drug Deliv Ther. 2020;10(5):325-332. DOI: 10.22270/jddt.v10i5.4280.
Siddique HR, Mishra SK, Karnes RJ, Saleem M. Lupeol, a novel androgen receptor inhibitor: implications in prostate cancer therapy. Clin Cancer Res. 2011;17(16):5379-5391. DOI: 10.1158/1078-0432.CCR-11-0916.
Liu J, Liu Y, Wang W, Luo Y, Zhuang Z, Jiao QB, et al. Development and evaluation of a high-fat/high-fructose diet-induced nonalcoholic steatohepatitis mouse model. Zhonghua Gan Zang Bing Za Zhi. 2014;22(6):445-450. DOI: 10.3760/cma.j.issn.1007-3418.2014.06.010.
Zarghani SS, Soraya H, Zarei L, Alizadeh M. Comparison of three different diet-induced nonalcoholic fatty liver disease protocols in rats: a pilot study. Pharm Sci. 2016;22(1):9-15. DOI:10.15171/PS.2016.03.
Huang Y, Yu Y, Gao J, Li R, Zhang C, Zhao H. et al. Impaired oocyte quality induced by dehydroepiandrosterone is partially rescued by metformin treatment. PLoS One. 2015;10(3):e0122370,1-18. DOI: 10.1371/journal.pone.0122370.
Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15-27. DOI: 10.1016/S0076-6879(99)99005-5.
Niehaus JR WG, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6(1):126-130. DOI: 10.1111/j.1432-1033.1968.tb00428.x.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. DOI: 10.1016/S0021-9258(19)52451-6.
Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994; 233:380-385. DOI: 10.1016/S0076-6879(94)33044-1.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131-138. DOI: 10.1016/0003-2697(82)90118-X.
Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581-585. DOI: 10.1038/nprot.2006.83.
Ninomiya M, Kondo Y, Shimosegawa T. Murine models of nonalcoholic fatty liver disease and steatohepatitis. ISRN Hepatol. 2013;2013:237870,1-7. DOI: 10.1155/2013/237870.
Zhong F, Zhou X, Xu J, Gao L. Rodent models of nonalcoholic fatty liver disease. Digestion. 2020;101(5):522-535. DOI: 10.1159/000501851.
Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod. 2012;86(5):149,1-12. DOI: 10.1095/biolreprod.111.097808.
Sudhahar V, Kumar SA, Varalakshmi P. Role of lupeol and lupeol linoleate on lipemic-oxidative stress in experimental hypercholesterolemia. Life Sci. 2006;78(12):1329-1335. DOI: 10.1016/j.lfs.2005.07.011.
Sudhahar V, Ashok Kumar S, Varalakshmi P, Sujatha V. Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated renal damage. Mol Cell Biochem. 2008;317:11-20. DOI: 10.1007/s11010-008-9786-5.
Ramu R, Shirahatti PS, Nanjunda SS, Farhan Z, Dhananjaya BL, Nagendra Prasad MN. Correction: assessment of in vivo antidiabetic properties of umbelliferone and lupeol constituents of banana (Musa sp. var. Nanjangud rasa bale) flower in hyperglycaemic rodent model. PLoS One. 2016;11(7):e0160048,1-17. DOI: 10.1371/journal.pone.0160048.
Tirmenstein MA, Nicholls-Grzemski FA, Zhang JG, Fariss MW. Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chem Biol Interact. 2000;127(3):201-217. DOI: 10.1016/S0009-2797(00)00180-0.
Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016;2016:8589318,1-16. DOI: 10.1155/2016/8589318.
Videla LA, Rodrigo R, Orellana M, Fernandez V, Tapia G, Quiñones L, et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci (Lond). 2004;106:261-268. DOI: 10.1042/CS20030285.
Serrano Mujica L, Bridi A, Della Méa R, Rissi VB, Guarda N, Moresco RN, et al. Oxidative stress and metabolic markers in pre-and postnatal polycystic ovary syndrome rat protocols. J Inflamm Res. 2018;11:193-202. DOI: 10.2147/JIR.S160264.
Schwabe RF, Brenner DA. Mechanisms of liver injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol. 2006;290(4):G583-G589. DOI: 10.1152/ajpgi.00422.2005.
Rathinavel T, Ammashi S, Shanmugam G. Analgesic and anti-inflammatory potential of lupeol isolated from Indian traditional medicinal plant Crateva adansonii screened through in vivo and in silico approaches. J Genet Eng Biotechnol. 2021;19: article 62,1-14. DOI: 10.1186/s43141-021-00167-6.
Saha S, Profumo E, Togna AR, Riganò R, Saso L, Buttari B. Lupeol counteracts the proinflammatory signalling triggered in macrophages by 7-keto-cholesterol: new perspectives in the therapy of atherosclerosis. Oxid Med Cell Longev. 2020;2020:1232816,1-12. DOI: 10.1155/2020/1232816.
Ding Y, Jiang Z, Xia B, Zhang L, Zhang C, Leng J. Mitochondria-targeted antioxidant therapy for an animal model of PCOS-IR. Int J Mol Med. 2019;43(1):316-324. DOI: 10.3892/ijmm.2018.3977.
Ryu Y, Kim SW, Kim YY, Ku SY. Animal models for human polycystic ovary syndrome (PCOS) focused on the use of indirect hormonal perturbations: a review of the literature. Int J Mol Sci. 2019;20(11):2720,1-27. DOI: 10.3390/ijms20112720.
Wu S, Divall S, Nwaopara A, Radovick S, Wondisford F, Ko C, et al. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes. 2014;63(4):1270-1282. DOI: 10.2337/db13-1514.
Franks S, Hardy K. Androgen action in the ovary. Front Endocrinol (Lausanne). 2018;9: article 452,1-7. DOI: 10.3389/fendo.2018.00452.
Deligeoroglou E, Vrachnis N, Athanasopoulos N, Iliodromiti Z, Sifakis S, Iliodromiti S, et al. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynaecol Endocrinol. 2012;28(12):974-978. DOI: 10.3109/09513590.2012.683082.
Li J, Huang Y, Han Y, Wang J, Zhang C, Jiang J. Lupeol reduces M1 macrophage polarization to attenuate immunologic dissonance and fatty acid deposition in rats with diet-induced metabolic syndrome. Ann Transl Med. 2021;9(20):1534,1-11. DOI: 10.21037/atm-21-4561.
Amiresmaeili A, Roohollahi S, Mostafavi A, Askari N. Effects of oregano essential oil on brain TLR4 and TLR2 gene expression and depressive-like behavior in a rat model. Res Pharm Sci. 2018;13(2):130-141. DOI: 10.4103/1735-5362.223795.
Cerda C, Pérez-Ayuso RM, Riquelme A, Soza A, Villaseca P, Sir-Petermann T, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. J Hepatol. 2007;47(3):412-417. DOI: 10.1016/j.jhep.2007.04.012.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.