The role of Mas receptor on renal hemodynamic responses to angiotensin II administration in chronic renal sympathectomized male and female rats
Abstract
Background and purpose: Renal hemodynamics is influenced by renal sympathetic nerves and the renin-angiotensin system. On the other hand, renal sympathetic denervation impacts kidney weight by affecting renal hemodynamics. The current study evaluated the role of the Mas receptor on renal hemodynamic responses under basal conditions and in response to angiotensin II (Ang II) in chronic renal sympathectomy in female and male rats.
Experimental approach: Forty-eight nephrectomized female and male rats were anesthetized and cannulated. Afterward, the effect of chronic renal sympathectomy was investigated on hemodynamic parameters such as renal vascular resistance (RVR), mean arterial pressure (MAP), and renal blood flow (RBF). In addition, the effect of chronic sympathectomy on kidney weight was examined.
Findings/Results: Chronic renal sympathectomy increased RVR and subsequently decreased RBF in both sexes. Renal perfusion pressure also increased after sympathectomy in male and female rats, while MAP did not change, significantly. In response to the Ang II injection, renal sympathectomy caused a greater decrease in RBF in all experimental groups, while it did not affect the MAP response. In addition, chronic sympathectomy increased left kidney weight in right nephrectomized rats.
Conclusion and implications: Chronic renal sympathectomy changed systemic/renal hemodynamics in baseline conditions and only renal hemodynamics in response to Ang II administration. Moreover, chronic sympathectomy increased compensatory hypertrophy in nephrectomized rats. These changes are unaffected by gender difference and Mas receptor blocker.
Highlights
Mehdi Nematbakhsh: PubMed , Google Scholar
Keywords
Full Text:
PDFReferences
Sata Y, Head GA, Denton K, May CN, Schlaich MP. Role of the sympathetic nervous system and its modulation in renal hypertension. Front Med (Lausanne). 2018;5:82,1-10. DOI: 10.3389/fmed.2018.00082
Abdulla MH, Sattar MA, Khan MAH, Abdullah NA, Johns EJ. Influence of sympathetic and AT1‐receptor blockade on angiotensin II and adrenergic agonist‐induced renal vasoconstrictions in spontaneously hypertensive rats. Acta Physiol (Oxf). 2009;195(3):397-404. DOI: 10.1111/j.1748-1716.2008.01895.x.
Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Hussain FBNM, Khan MAH, et al. Renal functional & haemodynamic changes following acute unilateral renal denervation in Sprague Dawley rats. Indian J Med Res. 2010;131:76-82. PMID: 20167977.
Bader M. Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol. 2010;50:439-465. DOI: 10.1146/annurev.pharmtox.010909.105610.
Miller AJ, Arnold AC. The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res. 2019;29(2):231-243. DOI: 10.1007/s10286-018-0572-5.
Carey RM. The intrarenal renin-angiotensin system in hypertension. Adv Chronic Kidney Dis. 2015;22(3):204-210. DOI: 10.1053/j.ackd.2014.11.004.
Hu S, Yi Y, Jiang T, Jiao Z, Dai S, Gong X, et al. Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol. 2020;94(9):3201-3215. DOI: 10.1007/s00204-020-02796-1.
Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond). 2012;123(4):193-203. DOI: 10.1042/CS20110677.
Ghatage T, Goyal SG, Dhar A, Bhat A. Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res. 2021;44(7): 740-755. DOI: 10.1038/s41440-021-00643-z.
Maleki M, Nematbakhsh M. Mas receptor antagonist (A799) alters the renal hemodynamics responses to angiotensin II administration after renal moderate ischemia/reperfusion in rats: gender related differences. Res Pharm Sci. 2019;14(1):12-19.DOI: 10.4103/1735-5362.251848.
Chai W, Wang W, Liu J, Barrett EJ, Carey RM, Cao W, et al. Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use. Hypertension. 2010;55(2):523-530. DOI: 10.1161/HYPERTENSIONAHA.109.145409.
Velez JCQ, Ryan KJ, Harbeson CE, Bland AM, Budisavljevic MN, Arthur JM, et al. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension. 2009;53(5):790-797. DOI: 10.1161/HYPERTENSIONAHA.109.128819.
Kong Y, Zhao X, Qiu M, Lin Y, Feng P, Li S, et al. Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis. 2021;12(1):110,1-20. DOI: 10.1038/s41419-020-03375-z.
Liu GC, Oudit GY, Fang F, Zhou J, Scholey JW. Angiotensin-(1–7)-induced activation of ERK1/2 is cAMP/protein kinase A-dependent in glomerular mesangial cells. Am J Physiol Renal Physiol. 2012;302(6):F784-F790. DOI: 10.1152/ajprenal.00455.2011.
Nematbakhsh M, Mansouri A. Renal vascular response to angiotensin 1-7 in rats: the role of Mas receptor. Res Pharm Sci. 2018;13(2):177-180. DOI: 10.4103/1735-5362.223803
Gunarathne LS, Rajapaksha IG, Casey S, Qaradakhi T, Zulli A, Rajapaksha H, et al. Mas-related G protein-coupled receptor type D antagonism improves portal hypertension in cirrhotic rats. Hepatol Commun. 2022;6(9):2523-2537. DOI: 10.1002/hep4.1987
Iliescu R, Lohmeier TE, Tudorancea I, Laffin L, Bakris GL. Renal denervation for the treatment of resistant hypertension: review and clinical perspective. Am J Physiol Renal Physiol. 2015;309(7):F583-F594. DOI: 10.1152/ajprenal.00246.2015.
Hong MN, Li XD, Chen DR, Ruan CC, Xu JZ, Chen J, et al. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension. Oncotarget. 2016;7(42):67828-67840. DOI: 10.18632/oncotarget.12182.
Gentilin A, Moghetti P, Cevese A, Schena F, Tarperi C. Sympathetic-mediated blunting of forearm vasodilation is similar between young men and women. Biol Sex Differ. 2022;13(1):33,1-12. DOI: 10.1186/s13293-022-00444-0.
Medina D, Mehay D, Arnold AC. Sex differences in cardiovascular actions of the renin–angiotensin system. Clin Auton Res. 2020;30(5):393-408. DOI: 10.1007/s10286-020-00720-2.
Saberi S, Dehghani A, Nematbakhsh M. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats. Res Pharm Sci. 2016;11(1):65-72. PMID: 27051434.
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ. 2020;11(1):31,1-17. DOI: 10.1186/s13293-020-00306-7.
Edwards A, Kurtcuoglu V. Renal blood flow and oxygenation. Pflugers Arch. 2022;474(8):759-770. DOI: 10.1007/s00424-022-02690-y.
Seeliger E, Wronski T, Ladwig M, Rebeschke T, Persson PB, Reinhardt HW. The ‘body fluid pressure control system’relies on the renin–angiotensin–aldosterone system: balance studies in freely moving dogs. Clin Exp Pharmacol Physiol. 2005;32(5‐6):394-399. DOI: 10.1111/j.1440-1681.2005.04201.x.
Textor SC. Pathophysiology and evaluation of renovascular hypertension. In comprehensive vascular and endovascular surgery. 2th ed. USA: Elsevier;.2009. p. 373-390. DOI: 10.1016/B978-0-323-05726-4.00024-X.
Dorrington KL, Pandit JJ. The obligatory role of the kidney in long‐term arterial blood pressure control: extending Guyton’s model of the circulation. Anaesthesia. 2009;64(11):1218-1228. DOI: 10.1111/j.1365-2044.2009.06052.x.
Baek EJ, Kim S. Current understanding of pressure natriuresis. Electrolyte Blood Press. 2021;19(2):38-45. DOI: 10.5049/EBP.2021.19.2.38.
Bie P, Evans RG. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol (Oxf). 2017;219(1):288-304. DOI: 10.1111/apha.12718.
Chen KW, Wu MWF, Chen Z, Tai BC, Goh YSB, Lata R, et al. Compensatory hypertrophy after living donor nephrectomy. Transplant Proc. 2016;48(3):716-719. DOI: 10.1016/j.transproceed.2015.12.082.
Takagi T, Mir MC, Sharma N, Remer EM, Li J, Demirjian S, et al. Compensatory hypertrophy after partial and radical nephrectomy in adults. J Urol. 2014;192(6):1612-1618. DOI: 10.1016/j.juro.2014.06.018.
Stojkovič J, Payer J, Siman J. Renal peripheral vascular resistance and compensatory hypertrophy of the kidney. Int Urol Nephrol. 1973;5:97-105. DOI: 10.1007/BF02081755.
Abellán CM, Mangold-Gehring S, Micus S, Beddies G, Moritz A, Hartmann E, et al. A novel model of chronic kidney disease in rats: dietary adenine in combination with unilateral nephrectomy. Kidney Dis (Basel). 2019;5(3):135-143. DOI: 10.1159/000495750.
Cai XN, Wang CY, Cai Y, Peng F. Effects of renal denervation on blood-pressure response to hemorrhagic shock in spontaneously hypertensive rats. Chin J Traumatol. 2018;21(5):293-300. DOI: 10.1016/j.cjtee.2018.09.001.
Ajayi AF, Akhigbe RE. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract. 2020;6:5,1-15. DOI: 10.1186/s40738-020-00074-3.
Bevan RD, Clementson A, Joyce E, Bevan JA. Sympathetic denervation of resistance arteries increases contraction and decreases relaxation to flow. Am J Physiol Heart Circ Physiol. 1993;264(2):H490-H494. DOI: 10.1152/ajpheart.1993.264.2.H490.
Dimitriadou V, Aubineau P, Taxi J, Seylaz J. Ultrastructural changes in the cerebral artery wall induced by long-term sympathetic denervation. Blood Vessels.1988;25(3):122-143. DOI: 10.1159/000158727.
Fronek K. Trophic effect of the sympathetic nervous system on vascular smooth muscle. Ann Biomed Eng. 1983;11(6):607-615. DOI: 10.1007/BF02364090.
Todd ME, Gowen B. Arterial wall and smooth muscle cell development in young Wistar rats and the effects of surgical denervation. Circ Res. 1991;69(2): 438-446. DOI: 10.1161/01.res.69.2.438.
Slovut DP, Mehta SH, Dorrance AM, Brosius FC, Watts SW, Webb RC. Increased vascular sensitivity and connexin43 expression after sympathetic denervation. Cardiovasc Res. 2004;62(2): 388-396. DOI: 10.1016/j.cardiores.2003.12.024.
Pohl U. Connexins: key players in the control of vascular plasticity and function. Physiol Rev. 2020;100(2):525-572. DOI: 10.1152/physrev.00010.2019.
Tripovic D, Pianova S, McLachlan EM, Brock JA. Transient supersensitivity to α-adrenoceptor agonists, and distinct hyper-reactivity to vasopressin and angiotensin II after denervation of rat tail artery. Br J Pharmacol. 2010;159(1):142-153. DOI: 10.1111/j.1476-5381.2009.00520.x.
Hosseini-Dastgerdi H, Kharazmi F, Pourshanazari AA, Nematbakhsh M. Renal denervation influences angiotensin II types 1 and 2 receptors. Int J Nephrol. 2022;2022:8731357,1-11. DOI: 10.1155/2022/8731357.
Hobara N, Goda M, Kitamura Y, Sendou T, Gomita Y, Kawasaki H. Adrenomedullin facilitates reinnervation of phenol-injured perivascular nerves in the rat mesenteric resistance artery. Neuroscience. 2007;144(2):721-730. DOI: 10.1016/j.neuroscience.2006.09.031.
van Loon LM, Rongen GA, van der Hoeven JG, Veltink PH, Lemson J. β‐Blockade attenuates renal blood flow in experimental endotoxic shock by reducing perfusion pressure. Physiol Rep. 2019;7(23):e14301,1-11. DOI: 10.14814/phy2.14301.
Lannemyr L, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten SE. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology. 2017;126(2): 205-213. DOI: 10.1097/ALN.0000000000001461.
Wegner J. Hemodilution: physiology and pathophysiology. In:. Gourlay T. editors, Gourlay T, Gunaydin S. Minimized cardiopulmonary bypass techniques and technologies.1st ed. USA: Woodhead Publishing Ltd; 2012.pp. 62-85. DOI:10.1533/9780857096029.1.62.
Mitrmoonpitak C, Chulasugandha P, Khow O, Noiprom J, Chaiyabutr N, Sitprija V. Effects of phospholipase A2 and metalloprotease fractions of Russell's viper venom on cytokines and renal hemodynamics in dogs. Toxicon. 2013;61: 47-53. DOI: 10.1016/j.toxicon.2012.10.017.
Bersten AD, Holt AW. Vasoactive drugs and the importance of renal perfusion pressure. New Horiz. 1995;3(4):650-661.PMID: 8574595.
Beloncle F, Piquilloud L, Asfar P. Renal blood flow and perfusion pressure. In: critical care nephrology. 3th ed. USA : Elsevier; 2019. p. 106-109.e2. DOI: 10.1016/B978-0-323-44942-7.00018-2.
Harrison-Bernard LM. The renal renin-angiotensin system. Adv Physiol Educ. 2009;33(4):270-274. DOI: 10.1152/advan.00049.2009.
Hao CM, Breyer MD. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 2007;71(11):1105-1115. DOI: 10.1038/sj.ki.5002192.
Cowley Jr AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol. 2015;308(3):F179-F197. DOI: 10.1152/ajprenal.00455.2014.
Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12(10):610-623. DOI: 10.1038/nrneph.2016.113.
Kim GH. Renal effects of prostaglandins and cyclooxygenase-2 inhibitors. Electrolyte Blood Press. 2008;6(1):35-41. DOI: 10.5049/EBP.2008.6.1.35.
Lim SY, Panikkath R, Prabhakar S. Syndrome of inappropriate antidiuretic hormone secretion associated with prolonged keterolac use. Clin Nephrol Case Stud. 2014;2:5-8. DOI: 10.5414/CNCS108083.
Kim S, Joo KW. Electrolyte and acid-base disturbances associated with non-steroidal anti-inflammatory drugs. Electrolyte Blood Press. 2007;5(2):116-125. DOI: 10.5049/EBP.2007.5.2.116.
Ancion A, Tridetti J, Nguyen Trung ML, Oury C, Lancellotti P. A review of the role of bradykinin and nitric oxide in the cardioprotective action of angiotensin-converting enzyme inhibitors: focus on perindopril. Cardiol Ther. 2019;8(2):179-191. DOI: 10.1007/s40119-019-00150-w.
Florea VG, Cohn JN. Disease prevention in heart failure. In: Felker GM, Mann DL. Heart failure: a companion to Braunwald's heart disease. 4th ed. USA: Elsevier; 2011. pp. 610-625. DOI: 10.1016/B978-1-4160-5895-3.10041-5.
Pezeshki Z, Nematbakhsh M. Sex differences in the renal vascular responses of AT1 and Mas receptors in two-kidney-one-clip hypertension. Int J Hypertens. 2021;2021:8820646,1-8. DOI: 10.1155/2021/8820646.
Augustyniak RA, Picken MM, Leonard D, Zhou XJ, Zhang W, Victor RG. Sympathetic nerves and the progression of chronic kidney disease during 5/6 nephrectomy: studies in sympathectomized rats. Clin Exp Pharmacol Physiol. 2010;37(1):12-18. DOI: 10.1111/j.1440-1681.2009.05253.x.
Watanabe H, Iwanaga Y, Miyaji Y, Yamamoto H, Miyazaki S. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with β-receptor blockade. Hypertens Res. 2016;39(4):217-226. DOI: 10.1038/hr.2015.133.
Barber JD, Harrington WW, Moss NG, Gottschalk CW. Prostaglandin blockade impairs denervation diuresis and natriuresis in the rat. Am J Physiol. 1986;250(5 Pt 2):F895-F900. DOI: 10.1152/ajprenal.1986.250.5.F895
Hinshaw LB, Day SB, Carlson CH. Tissue pressure as a causal factor in the autoregulation of blood flow in the isolated perfused kidney. Am J Physiol. 1959;197(2):309-312. DOI: 10.1152/ajplegacy.1959.197.2.309.
Davies B, Bannester R, Sever P, Wilcox C. The pressor actions of noradrenaline, angiotensin II and saralasin in chronic autonomic failure treated with fludrocortisone. Br J Clin Pharmacol. 1979;8(3):253-260. DOI: 10.1111/j.1365-2125.1979.tb01011.x.
Schunkert H, Ingelfinger JR, Jacob H, Jackson B, Bouyounes B, Dzau VJ. Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II. Am J Physiol. 1992;263(5 Pt 1):E863-E869.DOI: 10.1152/ajpendo.1992.263.5.E863.
Mann JF, Johnson AK, Ganten D. Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am J Physiol. 1980;238(5):R372-377.DOI: 10.1152/ajpregu.1980.238.5.R372.
Davies IB, Bannister R, Hensby C, Sever PS. The pressor actions of noradrenaline and angiotension II in chronic autonomic failure treated with indomethacin. Br J Clin Pharmacol. 1980;10(3): 223-229. DOI: 10.1111/j.1365-2125.1980.tb01748.x.
Wilkes BM, Pion I, Sollott S, Michaels S, Kiesel G. Intrarenal renin-angiotensin system modulates glomerular angiotensin receptors in the rat. Am J Physiol. 1988;254(3 Pt 2):F345-F350. DOI: 10.1152/ajprenal.1988.254.3.F345.
Clayton SC, Haack KKV, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am J Physiol Renal Physiol. 2011;300(1):F31-F39. DOI: 10.1152/ajprenal.00088.2010.
Clayton SC, Curry PL, Li Y, Zucker IH. Exercise training and renal denervation attenuate the expression of angiotensin II Type 1 and 2 receptors in rabbits with chronic heart failure. FASEB J. 2008;22(S2):159-159. DOI:10.1096/fasebj.22.2_supplement.159.
Wang TT, Wu XH, Zhang SL, Chan JS. Molecular mechanism(s) of action of norepinephrine on the expression of the angiotensinogen gene in opossum kidney cells. Kidney Int. 1998;54(3):785-795. DOI: 10.1046/j.1523-1755.1998.00069.x.
Liu Q, Zhang Q, Wang K, Wang S, Lu D, Li Z, et al. Renal denervation findings on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sci Rep. 2015;5:18582,1-9. DOI: 10.1038/srep18582.
Schetz M. Vasopressors and the kidney. Blood Purif. 2002;20(3):243-251. DOI: 10.1159/000047016.
McArdle Z, Schreuder MF, Moritz KM, Denton KM, Singh RR. Physiology and pathophysiology of compensatory adaptations of a solitary functioning kidney. Front Physiol. 2020;11:725,1-15. DOI: 10.3389/fphys.2020.00725.
Rojas‐Canales DM, Li JY, Makuei L, Gleadle JM. Compensatory renal hypertrophy following nephrectomy: When and how? Nephrology (Carlton). 2019;24(12):1225-1232. DOI: 10.1111/nep.13578.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.