Analytical determination, antioxidant and anti-inflammatory activities of Bhamrung-Lohit a traditional Thai medicine

Chitralada Panchakul , Pakakrong Thongdeeying, Arunporn Itharat , Weerachai Pipatrattanaseree, Chonthicha Kongkwamcharoen, Neal M. Davies

Abstract


Background and purpose: Bhamrung-Lohit (BRL) remedy is a traditional Thai medicine (TTM). There are few reports of biological activity, the activity of its constituent plants, or quantitative analytical methods for the content of phytochemicals. In this study, we investigated antioxidant, anti-inflammatory activity, and total phenolic and flavonoid content and validated a new analytical method for BRL.

Experimental approach: Antioxidant activity was evaluated by a 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging. The cellular antioxidant activity was evaluated by inhibition of the superoxide anion (O2●-) production from HL-60 cells and anti-inflammatory activity by inhibition of nitric oxide production in RAW264.7 cells. The total phenolic and flavonoid contents were analyzed using the Folin-Ciocalteu method and an aluminum chloride colorimetric assay, respectively. Validated analytical procedures were conducted according to International Conference on Harmonization (ICH) guidelines.

Findings/Results: An ethanolic extract of BRL exerted potent DPPH radical scavenging activity and moderate antioxidant and anti-inflammatory activity. Caesalpinia sappan exerted the greatest effect and the highest content of total phenolics and flavonoids. The HPLC method validated parameters that complied with ICH requirements. Each peak showed selectivity with a baseline resolution of 2.0 and precision was less than 2.0% CV. The linearity of all compounds was > 0.999 and the recovery % was within 98.0%-102.0%. The validated results demonstrated specificity/selectivity, linearity, precision, and accuracy with appropriate LOD and LOQ.

Conclusion and implication: BRL remedy, a TTM demonstrated antioxidant and anti-inflammatory properties. This study is the first report on the biological activity and the validation of an HPLC method for BRL remedy.

Keywords


Anti-inflammation; Antioxidant; Bhamrung-Lohit; HPLC; Method validation.

Full Text:

PDF

References


Gwozdzinski K, Pieniazek A, Gwozdzinski L. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid Med Cell Longev. 2021;2021:6639199. DOI: 10.1155/2021/6639199.

Motterlini R, Foresti R, Vandegriff K, Intaglietta M, Winslow R.M. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. Am J Physiol 1995;269(2 Pt 2):H648-55. DOI: 10.1152/ ajpheart. 1995.269.2.H648.

Zuo L, Prather E, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int J Mol Sci. 2019;20(18):4472. DOI: 10.3390/ijms20184472.

Wang C, Schuller Levis GB, Lee EB, Levis WR, Lee DW, Kim BS, Park SY, Park E. Platycodin D and D3 isolated from the root of Platycodon grandiflorum modulate the production of nitric oxide and secretion of TNF-[alpha] in activated RAW 264.7 cells International Immunopharmacology 2004;4(8): 1039-1049. DOI: 10.1016/j.intimp.2004.04.005.

Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative nitrosative stress: current state. Nutr J. 2016;5(1):71. DOI: 10.1186/s12937-016-0186-5.

Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. The Cochrane database of systematic reviews, 2012;2012(3), Cochrane Database Syst Rev 2008;(2):CD007176. DOI: 10.1002/14651858.CD007176.

Jeong SH, Kim BY, Kang HG, Ku HO, Cho JH. Effects of butylated hydroxyanisole on the development and functions of reproductive system in rats.Toxicology 2005;208(1):49-62. DOI: 10.1016/j.tox.2004.11.014.

Engin AB, Bukan N, Kurukahvecioglu O, Memis L,Engin A. Effect of butylated hydroxytoluene (E321) pretreatment versus l-arginine on liver injury after sub-lethal dose of endotoxin administration. Environ Toxicol Pharmacol 2011;32(3):457-464. DOI: 10.1016/j.etap.2011.08.014. Epub 2011 Sep 10.

Botterweck A, Verhagen H, Goldbohm R, Kleinjans J, Brandt PV. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands Cohort Study. Food Chem Toxicol. 2000;38(7):599-605. DOI: 10.1016/s0278-6915(00)00042-9.

Randhawa S, Bahna SL. Hypersensitivity reactions to food additives. Curr Opin Allergy Clin Immunol. 2009;9(3):278-283. DOI: 10.1097/ACI.0b013e32832b2632.

National Drug System Development Committee, “National list of essential medicines: herbal medicine list,” National Drug System Development Committee, Thailand; 2012: 56-57. Available from: kpo.moph.go.th/webkpo/tool/Thaimed2555.pdf.

Yamasaki K, Hashimoto A, Kokusenya Y, Miyamoto T, Sato T. Electrochemical method for estimating the antioxidative effects of methanol extracts of crude drugs. Chem Pharm Bull (Tokyo). 1994;42(8):1663-1665. DOI: 10.1248/cpb.42.1663.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-1237. DOI: 10.1016/s0891-5849(98)00315-3.

Surarit W, Jansom C, Lerdvuthisopon N, Kongkham S, Hansakul P. Evaluation of antioxidant activities and phenolic subtype contents of ethanolic bran extracts of Thai pigmented rice varieties through chemical and cellular assays. Int J Food Sci Tech. 2015;50(4):990-998. DOI: 10.1111/IJFS.12703.

Makchuchit S, Rattarom R, Itharat A. The anti-allergic and anti-inflammatory effects of Benjakul extract (a Thai traditional medicine), its constituent plants and its some pure constituents using in vitro experiments. Biomed Pharmacother. 2017;89:1018-1026. DOI: 10.1016/j.biopha.2017.02.066.

Folin O, Ciocalteu V. On tyrosine and tryptophan determination in proteins. J Biol Chem. 1927;73(2):627-650. DOI: 10.1016/S0021-9258(18)84277-6.

Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-559. DOI: 10.1016/S0308-8146(98)00102-2.

ICH Harmonised Tripartite Guideline, “Validation of analytical procedures: text and methodology Q2(R1),” Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human, ICH Harmonised Tripartite Guideline, Geneva, Switzerland; 2005. pp:6-13. Available from: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf.

Deng W, Wang Y, Liu Z, Cheng H, Xue Y. HemI: a toolkit for illustrating heatmaps. PLoS One. 2014;9(11):111988,1-5. DOI: 10.1371/journal.pone.0111988.

Batubara I, Mitsunaga T, Ohashi H. Screening antiacne potency of Indonesian medicinal plants: antibacterial, lipase inhibition, and antioxidant activities. J Wood Sci. 2009;55:230-235. DOI: 10.1007/s10086-008-1021-1.

Sasaki Y, Hosokawa T, Nagai M, Nagumo S. In vitro study for inhibition of NO production about constituents of Sappan lignum. Bio Pharm Bull. 2007;30(1):193-196. DOI: 10.1248/BPB.30.193.

Hu CM, Liu YH, Cheah KP, Li JS, Kei Lam CS, Yu WY, et al. Heme oxygenase-1 mediates the inhibitory actions of brazilin in RAW264.7 macrophages stimulated with lipopolysaccharide.85, 2009. J Ethnopharmacol. 2009;121(1):79-85. DOI: 10.1016/j.jep.2008.09.030.

Wu SQ, Otero M, Unger FM, Mary B, Goldring MB, Phrutivorapongkul A, et al. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J Ethnopharmacol. 2011;138(2):364-372. DOI: 10.1016/j.jep.2011.09.011.

da Costa FP, Puty B, Nogueira LS, Mitre GP, Santos S, Teixeira B, et al. Piceatannol increases antioxidant defense and reduces cell death in human periodontal ligament fibroblast under oxidative stress. Antioxidants (Basel). 2019;9(1):16,1-14. DOI: 10.3390/antiox9010016.

Hazra B, Sarkar R, Biswas S, Mandal N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement Altern Med. 2010;10:20,1-15. DOI: 10.1186/1472-6882-10-20.

Jayesh K, Karishma R, Vysakh A, Gopika P, Latha MS. Terminalia bellirica (Gaertn.) Roxb fruit exerts anti-inflammatory effect via regulating arachidonic acid pathway and pro-inflammatory cytokines in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammopharmacology. 2020;28:265-274. DOI: 10.1007/s10787-018-0513-x.

Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A. In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol. 2011;49(1):125-131. DOI: 10.1016/j.fct.2010.10.006. Epub 2010 Oct 14.

Rajkumari J, Dyavaiah M, Sudharshan SJ, Busi S. Evaluation of in vivo antioxidant potential of Syzygium jambos (L.) Alston and Terminalia citrina Roxb. towards oxidative stress response in Saccharomyces cerevisiae. J Food Sci Technol. 2018;55(11):4432-4439. DOI: 10.1007/s13197-018-3355-z.

Fahmy NM, Al-Sayed E, Singab AN. Genus Terminalia: a phytochemical and biological review. Med Aromat Plants. 2015;4:1000218,1-21. DOI: 10.4172/2167-0412.1000218.

Tanaka M, Kishimoto Y, Sasaki M, Sato A, Kamiya T, Kondo K, et al. Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-κB and Akt/AMPK/Nrf2 pathways. Oxid Med Cell Longev. 2018;2018:9364364,1-15. DOI: 10.1155/2018/9364364.

Chaiyasut C, Kesika P, Chaiyasut K, Sittiyuno P, Peerajan S, Sivamaruth BS. Total phenolic content and free radical scavenging activity of representative medicinal plants of Thailand. Asian J Pharm Clin Res. 2017;10(11):137-141. DOI: 10.22159/ajpcr.2017.v10i11.20741.

Gonda R, Takeda T, Akiyama T. Studies on the constituents of Anaxagorea luzonensis A. GRAY. Chem Pharm Bull (Tokyo). 2000;48(8):1219-1222. DOI: 10.1248/cpb.48.1219.

Gülçin I, Şat IG, Beydemir S, Elmastaş M, Küfrevioǧlu OI. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004;87(3):393-400. DOI: 10.1016/j.foodchem.2003.12.008.

Bamdad F, Kadivar M, Karamat J. Evaluation of phenolic content and antioxidant activity of Iranian caraway in comparison with clove and BHT using model systems and vegetable oil. Int J Food Sci Techno. 2006;40:20-27. DOI: 10.1111/j.1365-2621.2006.01238.x.

Rodrigues TG, Fernandes A Jr, Sousa JP, Bastos JK, Sforcin JM. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Nat Prod Res. 2009;23(4):319-326. DOI: 10.1080/14786410802242679.

Haro-González JN, Castillo-Herrera GA, Martínez-Velázquez M, Espinosa-Andrews H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules. 2021;26(21):6387. DOI: 10.3390/molecules26216387.

Pérez-Rosés R, Risco E, Vila R, Peñalver P, Cañigueral S. Biological and nonbiological antioxidant activity of some essential oils. J Agric Food Chem. 2016;64(23):4716-4724. DOI: 10.1021/acs.jafc.6b00986.

Yeh JL, Hsu JH, Hong YS, Wu JR, Liang JC, Wu BN, et al. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages. Int J Immunopathol Pharmacol. 2011;24(2):345-356. DOI: 10.1177/039463201102400208.

Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med. 2013;4(1):S36-S42. PMID: 23717767.

Jagetia GC, Baliga MS, Venkatesh P, Ulloor JN. Influence of ginger rhizome (Zingiber officinale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation. Radiat Res 2003;160(5):584-592. DOI: 10.1667/rr3057.

Haksar A, Sharma A, Chawla R, Kumar R, Arora R, Singh S, et al. Zingiber officinale exhibits behavioral radioprotection against radiation-induced CTA in a gender-specific manner. Pharmacol Biochem Behav. 2006;84(2):179-188. DOI: 10.1016/j.pbb.2006.04.008.

Kim JK, Kim Y, Na KM, Surh YJ, Kim TY. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic Res. 2007;41(5):603-614. DOI: 10.1080/10715760701209896.

Lincy MP, Paulpriya K, Mohan VR. In vitro antioxidant activity of Avicennia marina (Forssk) Vierh pneumatophore (Avicenniaceae) Sci Res Rep. 2013;3(2):106-114.

Okla MK, Alamri SA, Alatar AA, Hegazy AK, Al-Ghamdi AA, Ajarem JS, et al. Antioxidant, hypoglycemic, and neurobehavioral effects of a leaf extract of Avicennia marina on autoimmune diabetic mice. Evid Based Complement Alternat Med. 2019;2019:1263260,1-8. DOI: 10.1155/2019/1263260.

Zhu F, Chen X, Yuan Y, Huang M, Sun H, Xiang W. The chemical investigations of the mangrove plant Avicennia marina and its endophytes. Open Nat Prod J. 2009;2:24-32. DOI: 10.2174/1874848100902010024].

Jain R, Monthakantirat O, Tengamnuay P, De-Eknamkul W. Avicequinone C isolated from Avicennia marina exhibits 5α-reductase-type 1 inhibitory activity using an androgenic alopecia relevant cell-based assay system. Molecules. 2014;19(5):6809-6821. DOI: 10.3390/molecules19056809.

Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Res. 2013;27(8):1121-1130. DOI: 10.1002/ptr.4972.

Lee JY, Park W. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules. 2011;16(8):7132-7142. DOI: 10.3390/molecules16087132.

Chayan P, Wichien J. Handbook of Thai traditional pharmacy. Vol 5. Amarin Publishing House: Bangkok, Thailand; 2004. P. 234-239.

Chayan P, Manamas C, Wichien J. Description of the Narai’s drug. Amarin Publishing House: Bangkok Thailand; 1999. P. 150-165.

Tep-Areenan P, Sawasdee P. The vasorelaxant effects of Anaxagorea luzonensis A. grey in the rat aorta. Int J Pharmacol. 2011;7(1):119-124. DOI: 10.3923/IJP.2011.119.124.

Karnick CR. Pharmacopeial standards of herbal plants. Vol 1. Sri Satguru Publications; 1994. P.38.

Soonthorncharoennon N, Ruangwiset N. Quality of Thai pharmaceuticals from research to sustainable development. Vol. 1. Bangkok: Concept Medicus; 2008. P. 92.

World Health Organization. WHO monographs on selected medicinal plants. Vol 2. World Health Organization; 2002. P. 15-23.55. Department of Pharmacy and Botany Faculty of Pharmacy Mahidol University Encyclopedia of Herbs. Vol 1. Herbs Suan Sirirukhachat; 2000. P. 48-60.

Department of Pharmacy and Botany Faculty of Pharmacy Mahidol University Encyclopedia of Herbs. Herbs Suan Sirirukhachat. Vol 1; 2000.

China Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Vol 1. People Republic of China; 2005. P. 18.

Thaikasetsart (Internet), Samae Talay. 2020, Available from: www.thaikasetsart.com.

Soonthorncharoennon N, Ruangwiset N. Quality of Thai pharmaceuticals from research to sustainable development. Vol. 1. Bangkok: Concept Medicus; 2008. P. 371.

Thaicrudedrug [Internet]. Khrang; [cited 2022 Aug 4]. Available from: http://www.thaicrudedrug.com/main.php?action=viewpage&pid=198.

Soonthorncharoennon N, Ruangwiset N. Quality of Thai pharmaceuticals from research to sustainable development. Vol. 1. Bangkok: Concept Medicus; 2008. P. 230.

Aromdee C, Vorarat S, Benjamapriyagoon S. Physicochemical properties of Pikul Thai J Pharm Sci; 2005.

Soonthorncharoennon N, Ruangwiset N. Quality of Thai pharmaceuticals from research to sustainable development. Vol. 1. Bangkok: Concept Medicus; 2008. P. 323.

Thaicrudedrug (Internet). Samodeengu. 2022. Available from: http://www.thaicrudedrug.com/main.php?action=viewpage&pid=131.

Nguyen Ngoc H, Nghiem DT, Pham TLG, Stuppner H, Ganzera M. Phytochemical and analytical characterization of constituents in Urceola rosea (Hook. & Arn.) D.J. Middleton leaves. J Pharm Biomed Anal. 2018;149:66-69. DOI: 10.1016/j.jpba.2017.10.031.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.