The electrical stimulation of the central nucleus of the amygdala in combination with dopamine receptor antagonist reduces the acquisition phase of morphine-induced conditioned place preference in male rat

Zahra Jokar , Saeed Khatamsaz, Hojjatallah Alaei , Mehrdad Shariati

Abstract


Background and purpose: The central nucleus of the amygdala (CeA) is one of the nuclei involved in the reward system. The aim of the current study was to investigate the electrical stimulation (e-stim) effect of the CeA in combination with dopamine D1 receptor antagonist on morphine-induced conditioned place preference (CPP) in male rats.

Experimental approach: A 5-day procedure of CPP was used in this study. Morphine was administered at an effective dose of 5 mg/kg, and SCH23390 as a selective D1 receptor antagonist was administrated into the CeA. In addition, the CeA was stimulated with an intensity of the current of 150 µA. Finally, the dependence on morphine was evaluated in all experimental groups.

Findings /Results: Morphine significantly increased CPP. While the blockade of the D1 receptor of the CeA reduced the acquisition phase of morphine-induced CPP. Moreover, the combination of D1 receptor antagonist and e-stim suppressed morphine-induced CPP, even it induced an aversion.

Conclusion and implication: The current study suggests that the administration of dopamine D1 receptor antagonist into the CeA in combination with e-stim could play a prominent role in morphine dependence.

Keywords


Central amygdaloid nucleus; Dopamine D1 receptors; Electric stimulation; Morphine dependence; Rats.

Full Text:

PDF

References


Hajhashemi V, Zeinvand H. Effects of lisinopril, captopril and losartan alone or in combination with morphine in light tail flick analgesic test. Res Pharm Sci. 2009;2(2):97-101.

Khalilzadeh E, Vafaei Saiah G. The possible mechanisms of analgesia produced by microinjection of morphine into the lateral habenula in the acute model of trigeminal pain in rats. Res Pharm Sci. 2017;12(3):241-248.DOI: 10.4103/1735-5362.207205.

Højsted J, Sjøgren P. Addiction to opioids in chronic pain patients: a literature review. Eur J Pain. 2007;11(5):490-518.DOI: 10.1016/j.ejpain.2006.08.004.

Feltenstein MW, See RE. The neurocircuitry of addiction: an overview. Br J Pharmacol. 2008;154(2):261-274.DOI: 10.1038/bjp.2008.51.

Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3(1): 24,1-6.DOI: 10.1186/1755-7682-3-24.

Lee JH, Lee S, Kim JH. Amygdala circuits for fear memory: a key role for dopamine regulation. Neuroscientist. 2017;23(5):542-553.DOI: 10.1177/1073858416679936.

Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci. 2006;26(48):12387-12396.DOI: 10.1523/JNEUROSCI.4316-06.2006.

Forster GL, Novick AM, Scholl JL, Watt MJ. The role of the amygdala in anxiety disorders. In: Ferry B, editor. The amygdala: a discrete multitasking manager. Rijeka: InTech Open; 2012.61-102.DOI: 10.5772/50323.

Casey E, Avale ME, Kravitz A, Rubinstein M. Dopaminergic innervation at the central nucleus of the amygdala reveals distinct topographically segregated regions. Brain Struct Funct. 2023;228(2): 663-675.DOI: 10.1007/s00429-023-02614-1.

Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6(1):13-34.DOI: 10.1038/sj.mp.4000812.

Shahidani S, Jokar Z, Alaei H, Reisi P. Effects of treadmill exercise and chronic stress on anxiety‐like behavior, neuronal activity, and oxidative stress in basolateral amygdala in morphine‐treated rats. Synapse. 2023;77(1):e22256.DOI: 10.1002/syn.22256.

Mohammadi-Farani A, Farhangian S, Shirooie S. Sex differences in acetylcholinesterase modulation during spatial and fear memory extinction in the amygdala; an animal study in the single prolonged stress model of PTSD. Res Pharm Sci. 2022;17(6):686-696.DOI: 10.4103/1735-5362.359435.

Knight CP, Hauser SR, Waeiss RA, Molosh AI, Johnson PL, Truitt WA, et al. The rewarding and anxiolytic properties of ethanol within the central nucleus of the amygdala: mediated by genetic background and nociceptin. J Pharmacol Exp Ther. 2020;374(3):366-375.DOI: 10.1124/jpet.119.262097.

Tom RL, Ahuja A, Maniates H, Freeland CM, Robinson MJ. Optogenetic activation of the central amygdala generates addiction‐like preference for reward. Eur J Neurosci. 2019;50(3):2086-2100.DOI: 10.1111/ejn.13967.

Jokara Z, Khatamsaz S, Alaei H, Shariati M. Effect of electrical stimulation of central nucleus of the amygdala on morphine conditioned place preference in male rats. Iran J Basic Med Sci. 2022;25(5):604-610. DOI: 10.22038/IJBMS.2022.62133.13751.

Wise RA, Jordan CJ. Dopamine, behavior, and addiction. J Biomed Sci . 2021;28(1): 83,1-9.DOI: 10.1186/s12929-021-00779-7.

Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189-225.DOI: 10.1152/physrev.1998.78.1.189.

Jones-Tabah J, Mohammad H, Paulus EG, Clarke P, Hébert TE. The signaling and pharmacology of the dopamine D1 receptor. Front Cell Neurosci. 2022;15: 806618,1-28.DOI: 10.3389/fncel.2021.806618.

Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125-132. DOI: 10.1016/s0149-7634(99)00063-9.

Meador-Woodruff J, Mansour A, Healy D, Kuehn R, Zhou Q, Bunzow J, et al. Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology. 1991;5(4):231-242.

PMID: 1839499.

Undieh AS. Pharmacology of signaling induced by dopamine D1-like receptor activation. Pharmacol Ther. 2010;128(1):37-60.DOI: 10.1016/j.pharmthera.2010.05.003.

Naghavi FS, Namvar P, Sadeghzadeh F, Haghparast A. The involvement of intra-hippocampal dopamine receptors in the conditioned place preference induced by orexin administration into the rat ventral tegmental area. Iran J Pharm Res. 2019;18(1):328-338.

PMID: 31089367.

Rezaei Z, Alaei H, Reisi P. Involvement of basolateral amygdala dopamine D1 receptors in the acquisition and expression of morphine-induced place preference in rats. Adv Biomed Res. 2022;11:8.DOI: 10.4103/abr.abr_284_21.

Amohashemi E, Reisi P, Alaei H. Lateral habenula electrical stimulation with different intensities in combination with GABAB receptor antagonist reduces acquisition and expression phases of morphine-induced CPP. Neurosci Lett. 2021;759:135996,1-6.DOI: 10.1016/j.neulet.2021.135996.

Radahmadi M, Ramshini E, Hosseini N, Karimi S, Alaei H. Effect of electrical stimulation of nucleus accumbens with low, median and high currents intensities on conditioned place preference induced by morphine in rats. Adv Biomed Res. 2014;3:14,1-6.DOI: 10.4103/2277-9175.124643.

Alaei H, Pour MG. Stimulation and transient inactivation of ventral tegmental area modify reinstatement of acquisition phase of morphine-induced conditioned place preference in male rats. Brain Res Bull . 2021;176:130-141.DOI: 10.1016/j.brainresbull.2021.08.014

Rezaei Z, Alaei H, Reisi P. Effects of electrical stimulation and temporary inactivation of basolateral amygdala on morphine-induced conditioned place preference in rats. Neurosci Lett. 2022;774:136519.DOI: 10.1016/j.neulet.2022.136519.

Li T, Qadri F, Moser A. Neuronal electrical high frequency stimulation modulates presynaptic GABAergic physiology. Neurosci Lett. 2004;371(2-3):117-121.DOI: 10.1016/j.neulet.2004.08.050.

Li T, Thümen A, Moser A. Modulation of a neuronal network by electrical high frequency stimulation in striatal slices of the rat in vitro. Neurochem Int. 2006;48(2):83-86.DOI: 10.1016/j.neuint.2005.09.004.

Kargari A, Ramshini E, Alaei H, Sedighi M, Oryan S. Different current intensities electrical stimulation of prelimbic cortex of mPFC produces different effects on morphine-induced conditioned place preference in rats. Behav Brain Res. 2012;231(1):187-192.DOI: 10.1016/j.bbr.2012.03.016.

Zarrindast MR, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y. Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res. 2003;965(1-2):212-221.DOI: 10.1016/s0006-8993(02)04201-4.

Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Elsevier. USA: Academic Press; 2006. pp: 92.

Ghavipanjeh GR, Pourshanazari AA, Alaei H, Karimi S. The influence of electrical stimulation on dorsal raphe nucleus with different current intensities on morphine-induced conditioned place preference in male rats. Pharmacol Rep. 2015;67(5):832-836.DOI: 10.1016/j.pharep.2015.01.006.

Maccioni R, Serra M, Marongiu J, Cottiglia F, Maccioni E, Bassareo V, et al. Effects of docosanyl ferulate, a constituent of Withania somnifera, on ethanol-and morphine-elicited conditioned place preference and ERK phosphorylation in the accumbens shell of CD1 mice. Psychopharmacology (Berl). 2022;239(3):795-806.DOI: 10.1007/s00213-022-06069-w.

Mu Y, Ren Z, Jia J, Gao B, Zheng L, Wang G, et al. Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference. Mol Brain. 2014;7: 70,1-11.DOI: 10.1186/s13041-014-0070-1.

Ghavipanjeh GR, Pourshanazari AA, Alaei H, Karimi S, Nejad MA. Effects of temporary inactivation and electrical stimulation of the dorsal raphe nucleus on morphine-induced conditioned place preference. Malays J Med Sci. 2015;22(2):33-40.PMID: 26023293.

Liang J, Ping XJ, Li YJ, Ma YY, Wu LZ, Han JS, et al. Morphine-induced conditioned place preference in rats is inhibited by electroacupuncture at 2 Hz: role of enkephalin in the nucleus accumbens. Neuropharmacology. 2010;58(1):233-240.DOI: 10.1016/j.neuropharm.2009.07.007.

Wang S. Historical review: opiate addiction and opioid receptors. Cell Transplant. 2019;28(3):233-238.DOI: 10.1177/0963689718811060.

Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci. 2019;20(17):4302,1-23.DOI: 10.3390/ijms20174302.

Self DW. Dopamine receptor subtypes in reward and relapse. In: Neve KA. The dopamine receptors. Humana Press: Totowa, NJ; 2010. pp. 479-524.DOI: 10.1007/978-1-60327-333-6_17.

Ito H, Takahashi H, Arakawa R, Takano H, Suhara T. Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage. 2008;39(2):555-565.DOI: 10.1016/j.neuroimage.2007.09.011.

Scibilia RJ, Lachowicz JE, Kilts CD. Topographic nonoverlapping distribution of D1 and D2 dopamine receptors in the amygdaloid nuclear complex of the rat brain. Synapse. 1992;11(2):146-154.DOI: 10.1002/syn.890110208.

Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci. 2002;3(7):563-573.DOI: 10.1038/nrn875.

Murray EA. The amygdala, reward and emotion. Trends Cogn Sci. 2007;11(11):489-497.DOI: 10.1016/j.tics.2007.08.013.

Korn CW, Vunder J, Miró J, Fuentemilla L, Hurlemann R, Bach DR. Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-sensitive approach–avoidance conflict test. Biol Psychiatry. 2017;82(7):522-531.DOI: 10.1016/j.biopsych.2017.01.018.

Freedman LJ, Cassell MD. Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat. Brain Res. 1994;633(1-2):243-252.DOI: 10.1016/0006-8993(94)91545-8.

Gallagher M, Graham PW, Holland PC. The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J Neurosci. 1990;10(6): 1906-1911.DOI: 10.1523/JNEUROSCI.10-06-01906.1990.

Bouarab C, Thompson B, Polter AM. VTA GABA neurons at the interface of stress and reward. Front Neural Circuits. 2019;13:78,1-12.DOI: 10.3389/fncir.2019.00078.

Nikolaus S, Wittsack HJ, Beu M, Antke C, De Souza Silva MA, Wickrath F, et al. GABAergic control of nigrostriatal and mesolimbic dopamine in the rat brain. Front Behav Neurosci. 2018;12: 38,1-13.DOI: 10.3389/fnbeh.2018.00038.

Madhavan A, Bonci A, Whistler JL. Opioid-induced GABA potentiation after chronic morphine attenuates the rewarding effects of opioids in the ventral tegmental area. J Neurosci. 2010;30(42): 14029-14035.DOI: 10.1523/JNEUROSCI.3366-10.2010.

Fakhrieh‐Asl G, Sadr SS, Karimian SM, Riahi E. Deep brain stimulation of the orbitofrontal cortex prevents the development and reinstatement of morphine place preference. Addict Biol. 2020;25(4):e12780,1-12.DOI: 10.1111/adb.12780.

Fattahi M, Ashabi G, Karimian SM, Riahi E. Preventing morphine reinforcement with high‐frequency deep brain stimulation of the lateral hypothalamic area. Addict Biol. 2019;24(4):685-695.DOI: 10.1111/adb.12634.

Warlow SM, Robinson MJ, Berridge KC. Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine. J Neurosci Res. 2017;37(35):8330-8348.DOI: 10.1523/JNEUROSCI.3141-16.2017.

Zhang Z, Tao W, Hou YY, Wang W, Lu YG, Pan ZZ. Persistent pain facilitates response to morphine reward by downregulation of central amygdala GABAergic function. Neuropsychopharmacology. 2014;39(9):2263-2271.DOI: 10.1038/npp.2014.77.

Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217DOI: 10.1124/pr.110.002642.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.