The effect of mutation on neurotoxicity reduction of new chimeric reteplase, a computational study

Pardis Mohammadi pour , Karim Mahnam, Mahsa Taherzadeh, Shahrzad Ahangarzadeh, Abbas Alibakhshi , Elmira Mohammadi


Background and purpose: Excitotoxicity in nerve cells is a type of neurotoxicity in which excessive stimulation of receptors (such as N-methyl-d-aspartate glutamate receptors (NMDAR)) leads to the influx of high-level calcium ions into cells and finally cell damage or death. This complication can occur after taking some of the plasminogen activators like tissue plasminogen activator and reteplase. The interaction of the kringle2 domain in such plasminogen activator with the amino-terminal domain (ATD) of the NR1 subunit of NMDAR finally leads to excitotoxicity. In this study, we assessed the interaction of two new chimeric reteplase, mutated in the kringle2 domain, with ATD and compared the interaction of wild-type reteplase with ATD, computationally.

Experimental approach: Homology modeling, protein docking, molecular dynamic simulation, and molecular dynamics trajectory analysis were used for the assessment of this interaction.

Findings/Results: The results of the free energy analysis between reteplase and ATD (wild                           reteplase: -2127.516 ± 0.0, M1-chr: -1761.510 ± 0.0, M2-chr: -521.908 ± 0.0) showed lower interaction of this chimeric reteplase with ATD compared to the wild type.

Conclusion and implications: The decreased interaction between two chimeric reteplase and ATD of NR1 subunit in NMDAR which leads to lower neurotoxicity related to these drugs, can be the start of a way to conduct more tests and if the results confirm this feature, they can be considered potential drugs in acute ischemic stroke treatment. 


Chimeric reteplase; Docking; Molecular dynamic simulation; Excitotoxicity; Neurotoxicity.

Full Text:



Novakovic R, Toth G, Purdy PD. Review of current and emerging therapies in acute ischemic stroke. J Neurointerv Surg. 2009;1(1):13-26. DOI: 10.1136/jnis.2009.000117.

Adivitiya, Khasa YP. The evolution of recombinant thrombolytics: current status and future directions. Bioengineered. 2017;8(4):331-358. DOI: 10.1080/21655979.2016.1229718.

Prasad K, Singh P, Kanabar K, Vijayvergiya R. Pulmonary haemorrhage following thrombolysis with streptokinase in myocardial infarction. BMJ Case Reports. 2020;13(1):e232308,1-3.DOI: 10.1136/bcr-2019-232308.

He Z, Jiang L, Zhang T, Zhou M, Wu D, Yuan T, et al. Efficient increase of the novel recombinant human plasminogen activator expression level and stability through the use of homozygote transgenic rabbits. Int J Mol Med. 2018;42(4):2269-2275.DOI: 10.3892/ijmm.2018.3754.

Gebbink MFBG. Tissue‐type plasminogen activator‐mediated plasminogen activation and contact activation, implications in and beyond haemostasis. J Thromb Haemost. 2011;9:174-181. DOI: 10.1111/j.1538-7836.2011.04278.x.

Nordt TK, Bode C. Thrombolysis: newer thrombolytic agents and their role in clinical medicine. Heart. 2003;89(11):1358-1362.

DOI: 10.1136/heart.89.11.1358.

Mican J, Toul M, Bednar D, Damborsky J. Structural biology and protein engineering of thrombolytics. Comput Struct Biotechnol J. 2019;17:917-938. DOI: 10.1016/j.csbj.2019.06.023.

Lopez-Atalaya JP, Roussel BD, Levrat D, Parcq J, Nicole O, Hommet Y, et al. Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity. J Cereb Blood Flow Metab. 2008;28(6):1212-1221. DOI: 10.1038/jcbfm.2008.14.

Benchenane K, Castel H, Boulouard M, Bluthé R, Fernandez-Monreal M, Roussel BD, et al. Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J Cell Sci. 2007;120(Pt 4): 578-585. DOI: 10.1242/jcs.03354.

Kadir RRA, Bayraktutan U. Urokinase plasminogen activator: a potential thrombolytic agent for ischaemic stroke. Cell Mol Neurobiol. 2020;40(3):347-355. DOI: 10.1007/s10571-019-00737-w.

Mohammadi E, Seyedhosseini-Ghaheh H, Mahnam K, Jahanian-Najafabadi A, Mir Mohammad Sadeghi H. Reteplase: structure, function, and production. Adv Biomed Res. 2019;8:19,1-6. DOI: 10.4103/abr.abr_169_18.

Dillon GM, Stevens S, Dusenbury WL, Massaro L, Toy F, Purdon B. Choosing the correct “-ase” in acute ischemic stroke: alteplase, tenecteplase, and reteplase. Adv Emerg Nurs J. 2019;41(3):271-278.DOI: 10.1097/TME.0000000000000254.

Mohammadi E, Mahnam K, Jahanian-Najafabadi A, Mir Mohmmad Sadeghi H. Design and production of new chimeric reteplase with enhanced fibrin affinity: a theoretical and experimental study. J Biomol Struct Dyn. 2021;39(4):1321-1333. DOI: 10.1080/07391102.2020.1729865.

Parcq J, Bertrand T, Baron A, Hommet Y, Anglès‐Cano E, Vivien D. Molecular requirements for safer generation of thrombolytics by bioengineering the tissue‐type plasminogen activator A chain. J Thromb Haemost. 2013;11(3):539-546.DOI: 10.1111/jth.12128.

Lazim R, Suh D, Choi S. Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. Int J Mol Sci. 2020;21(17):6339,1-20. DOI: 10.3390/ijms21176339.

Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, et al. Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity. WIREs Comput Mol Sci. 2019;9(3):e1393,1-23. DOI: 10.1002/wcms.1393.

Chong WL, Chupradit K, Chin SP, Khoo MM, Khor SM, Tayapiwatana C, et al. Protein-protein interactions: insight from molecular dynamics simulations and nanoparticle tracking analysis. Molecules. 2021;26(18):5696,1-13. DOI: 10.3390/molecules26185696.

Gao Q, Ming D. Protein-protein interactions enhance the thermal resilience of SpyRing-cyclized enzymes: A molecular dynamic simulation study. PloS One. 2022;17(2):e0263792,1-16. DOI: 10.1371/journal.pone.0263792.

Celik I, Yadav R, Duzgun Z, Albogami S, El-Shehawi AM, Idroes R, et al. Interactions of the receptor binding domain of SARS-CoV-2 variants with hACE2: insights from molecular docking analysis and molecular dynamic simulation. Biology (Basel). 2021;10(9):880,1-20. DOI: 10.3390/biology10090880.

Fernández-Monreal M, López-Atalaya JP, Benchenane K, Cacquevel M, Dulin F, Le Caer JP, et al. Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem. 2004;279(49):50850-50846. DOI: 10.1074/jbc.M407069200.

Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125(7):1731-1737. DOI: 10.1021/ja026939x.

Balu K, Rajendran V, Sethumadhavan R, Purohit R. Investigation of binding phenomenon of NSP3 and p130Cas mutants and their effect on cell signalling. Cell Biochem Biophys. 2013;67(2):623-633. DOI: 10.1007/s12013-013-9551-6.

Banisharif-Dehkordi F, Mobini-Dehkordi M, Shakhsi-Niaei M, Mahnam K. Design and molecular dynamic simulation of a new double-epitope tolerogenic protein as a potential vaccine for multiple sclerosis disease. Res Pharm Sci. 2019;14(1):20-26. DOI: 10.4103/1735-5362.251849.

Nemaysh V, Luthra PM. Computational analysis revealing that K634 and T681 mutations modulate the 3D-structure of PDGFR-β and lead to sunitinib resistance. RSC Adv. 2017;7(60):37612-3726. DOI: 10.1039/c7ra01305a.

Nasab RR, Mansourian M, Hassanzadeh F, Shahlaei M. Exploring the interaction between epidermal growth factor receptor tyrosine kinase and some of the synthesized inhibitors using combination of in-silico and in-vitro cytotoxicity methods. Res Pharm Sci. 2018;13(6):509-522. DOI: 10.4103/1735-5362.245963.

Wang C, Greene DA, Xiao L, Qi R, Luo R. Recent developments and applications of the MMPBSA method. Front Mol Biosci. 2018;4:87,1-18. DOI: 10.3389/fmolb.2017.00087.

Vivien D, Gauberti M, Montagne A, Defer G, Touzé E. Impact of tissue plasminogen activator on the neurovascular unit: from clinical data to experimental evidence. J Cereb Blood Flow Metab. 2011;31(11):2119-2134. DOI: 10.1038/jcbfm.2011.127.

Macrez R, Obiang P, Gauberti M, Roussel B, Baron A, Parcq J, et al. Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke. 2011;42(8):2315-2322. DOI: 10.1161/STROKEAHA.110.606293.

Jullienne A, Montagne A, Orset C, Lesept F, Jane DE, Monaghan DT, et al. Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. Mol Neurodegener. 2011;6:68,1-11. DOI: 10.1186/1750-1326-6-68.

De Vita S, Chini MG, Bifulco G, Lauro G. Insights into the ligand binding to bromodomain-containing protein 9 (BRD9): a guide to the selection of potential binders by computational methods. Molecules. 2021;26(23):7192,1-27. DOI: 10.3390/molecules26237192.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.