Renal vascular responses to angiotensin II infusion in two kidneys-one clip hypertensive rats under partial ischemia/reperfusion with and without ischemia preconditioning: the roles of AT1R blockade and co-blockades of AT1R and MasR

Farzaneh Karimi , Mehdi Nematbakhsh

Abstract


Background and purpose: The renin-angiotensin system activation, partial ischemia/reperfusion (IR) injury, and hypertension contribute to the development of acute kidney injury. The study aims to look at the vascular responses of angiotensin II (Ang II) during Ang II type 1 receptor (AT1R) blockade (losartan) or co-blockades of AT1R and Mas receptor (A779) in two kidneys one clip (2K1C) hypertensive rats which subjected to partial IR injury with and without ischemia preconditioning (IPC).

Experimental approach: Thirty-three 2K1C male Wistar rats with systolic blood pressure ≥ 150 mmHg were divided into three groups of sham, IR, and IPC + IR divided into two sub-groups receiving losartan or losartan + A779. The IR group had 45 min partial kidney ischemia, while the IPC + IR group had two 5 min cycles of partial ischemia followed by 10 min of reperfusion and then 45 min of partial kidney ischemia followed by reperfusion. The sham group was subjected to similar surgical procedures except for IR or IPC.

Findings/Results: Ang II increased mean arterial pressure in all the groups, but there were no significant differences between the sub-groups. A significant difference was observed in the renal blood flow response to Ang II between two sub-groups of sham and IR groups treated with AT1R blockade alone or co-blockades of AT1R + A779.

Conclusion and implications: These findings demonstrated the significance of AT1R and Mas receptor following partial renal IR in the renal blood flow responses to Ang II in 2K1C hypertensive rats.


Keywords


Angiotensin II; AT1R; MasR; Renal ischemia/reperfusion; Two kidneys-one clip.

Full Text:

PDF

References


Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev. 2015;4(2):20-27.DOI: 10.12861/jrip.2015.06.

Regner KR, Roman RJ. Role of medullary blood flow in the pathogenesis of renal ischemia-reperfusion injury. Curr Opin Nephrol Hypertens. 2012;21(1):33-38.DOI: 10.1097/MNH.0b013e32834d085a.

Karimi F, Kasaei S, Baradaran A, Ashrafi F, Talebi A, Lak Z, et al. Dextrose hydration may promote cisplatin-induced nephrotoxicity in rats: gender-related difference. Indones Biomed J 2019;11(2):136-144.DOI: 10.18585/inabj.v11i2.502.

Gassanov N, Nia AM, Caglayan E, Er F. Remote ischemic preconditioning and renoprotection: from myth to a novel therapeutic option? J Am Soc Nephrol. 2014;25(2):216-224.DOI: 0.1681/ASN.2013070708.

Veighey K, MacAllister R. Clinical applications of remote ischaemic preconditioning in native and transplant acute kidney injury. Pediatr Nephrol. 2015;30(10):1749-1759.DOI: 10.1007/s00467-014-2965-6.

Choi HS, Hwang JK, Kim JG, Hwang HS, Lee SJ, Chang YK, et al. The optimal duration of ischemic preconditioning for renal ischemia-reperfusion injury in mice. Ann Surg Treat Res. 2017;93(4):209-216.DOI: 10.4174/astr.2017.93.4.209.

Granfeldt A, Lefer DJ, Vinten-Johansen J. Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc Res. 2009;83(2):234-246.DOI: 10.1093/cvr/cvp129.

Takimoto-Ohnishi E, Murakami K. Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci. 2019;69(4):581-587.DOI: 10.1007/s12576-019-00679-4.

Saberi S, Dehghani A, Nematbakhsh M. Role of Mas receptor in renal blood flow response to angiotensin-(1-7) in ovariectomized estradiol treated rats. Res Pharm Sci. 2016;11(1):65-72.PMID: 27051434.

Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: an insight on acute kidney injury. Biomed Pharmacother. 2019;110: 764-774.DOI: 10.1016/j.biopha.2018.12.018.

Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1106-1114.DOI: 10.1016/j.bbadis.2016.07.019.

Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The renin-angiotensin-aldosterone system as a therapeutic target in late injury caused by ischemia-reperfusion. Int J Endocrinol. 2018;2018:3614303,1-19.DOI: 10.1155/2018/3614303.

Srisawat U, Kongrat S, Muanprasat C, Chatsudthipong V. Losartan and sodium nitroprusside effectively protect against renal impairments after ischemia and reperfusion in rats. Biol Pharm Bull. 2015;38(5):753-762.DOI: 10.1248/bpb.b14-00860.

Franzén S, Frithiof R. Pre-treatment with the angiotensin receptor 1 blocker losartan protects renal blood flow and oxygen delivery after propofol-induced hypotension in pigs. Sci Rep. 2020;10(1):17924,1-10.DOI: 10.1038/s41598-020-74640-6.

Kobori H, Mori H, Masaki T, Nishiyama A. Angiotensin II blockade and renal protection. Curr Pharm Des. 2013;19(17):3033-3042.DOI: 10.2174/1381612811319170009.

Maleki M, Nematbakhsh M. Mas receptor antagonist (A799) alters the renal hemodynamics responses to angiotensin II administration after renal moderate ischemia/reperfusion in rats: gender related differences. Res Pharm Sci. 2019;14(1):12.DOI: 10.4103/1735-5362.251848.

Nematbakhsh M. Renoprotective impact of angiotensin 1-7: is it certain? J. Nephropathol. 2019;8(1):e01,1-6.DOI: 10.15171/jnp.2019.01.

Saberi S, Dehghani A, Nematbakhsh M. Angiotensin 1-7 administration increases renal blood flow in the absence of bradykinin B2 receptor in ovariectomized estradiol treated rats: the role of mas receptor. Acta Medica Iranica. 2019;57(2):103-109.DOI: 10.18502/acta.v57i2.1764.

Bansal N, McCulloch CE, Rahman M, Kusek JW, Anderson AH, Xie D, et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: the chronic renal insufficiency cohort study. Hypertension. 2015;65(1):93-100.DOI: 10.1161/HYPERTENSIONAHA.114.04334.

Kim YG, Lee SH, Kim SY, Lee A, Moon JY, Jeong KH, et al. Sequential activation of the intrarenal renin-angiotensin system in the progression of hypertensive nephropathy in Goldblatt rats. Am J Physiol Renal Physiol. 2016;311(1):F195-F206.DOI: 10.1152/ajprenal.00001.2015.

Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL. Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond). 2018;132(13):1383-401.DOI: 10.1042/CS20180121.

Fang F, Liu GC, Zhou X, Yang S, Reich HN, Williams V, et al. Loss of ACE2 exacerbates murine renal ischemia-reperfusion injury. PloS One. 2013;8(8):e71433,1-17.DOI: 10.1371/journal.pone.0071433,

Kaschina E, Namsolleck P, Unger T. AT2 receptors in cardiovascular and renal diseases. Pharmacol Res. 2017;125(Pt A):39-47.DOI: 10.1016/j.phrs.2017.07.008.

Ali R, Patel S, Hussain T. Angiotensin type 2 receptor activation limits kidney injury during the early phase and induces Treg cells during the late phase of renal ischemia. Am J Physiol Renal Physiol. 2021;320(5):F814-F825.DOI: 10.1152/ajprenal.00507.2020.

Wang Z, Wang S, Zhao J, Yu C, Hu Y, Tu Y, et al. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of renin-angiotensin system components in rats. Int J Med Sci. 2019;16(5):644-653.DOI: 10.7150/ijms.31075.

da Silveira KD, Pompermayer Bosco KS, Diniz LR, Carmona AK, Cassali GD, Bruna-Romero O, et al. ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond). 2010;119(9):385-394.DOI: 10.1042/CS20090554.

Pinheiro SV, Ferreira AJ, Kitten GT, Da Silveira KD, Da Silva DA, Santos SH, et al. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int. 2009;75(11):1184-1193.DOI: 10.1038/ki.2009.61.

Karimi F, Nematbakhsh M. Mas receptor blockade promotes renal vascular response to Ang II after partial kidney ischemia/reperfusion in a two-kidney-one-clip hypertensive rats model. Int J Nephrol. 2021;2021:6618061,1-8.DOI: 10.1155/2021/6618061.

Mansoori A, Oryan S, Nematbakhsh M. Role of Mas receptor antagonist (A779) in renal hemodynamics in condition of blocked angiotensin II receptors in rats. Physiol Int. 2016;103(1):13-20.DOI: 10.1556/036.103.2016.1.2.

Safari T, Nematbakhsh M, Hilliard LM, Evans RG, Denton KM. Sex differences in the renal vascular response to angiotensin II involves the M as receptor. Acta Physiol (Oxf). 2012;206(2):150-156.DOI: 10.1111/j.1748-1716.2012.02468.x.

Pereira TdMC, Balarini CdM, Silva IV, Cabral A, Vasquez E, Meyrelles S. Endogenous angiotensin II modulates nNOS expression in renovascular hypertension. Braz J Med Biol Res. 2009;42(7): 685-691.DOI: 10.1590/s0100-879x2009000700014.

Thongsepee N, Mahabusarakam W, Hiranyachattada S. Diuretic and hypotensive effect of morelloflavone from Garcinia dulcis in two-kidneys-one-clip (2K1C) hypertensive rat. Sains Malaysiana. 2017;46(9):1479-1490.DOI: 10.17576/jsm-2017-4609-17.

Bivol LM, Vågnes OB, Iversen BM. The renal vascular response to ANG II injection is reduced in the nonclipped kidney of two-kidney, one-clip hypertension. Am J Physiol Renal Physiol. 2005;289(2):F393-F400.DOI: 10.1152/ajprenal.00319.2004.

Dasgupta C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today. 2011;16(1-2):22-34.DOI: 10.1016/j.drudis.2010.11.016.

Premer C, Lamondin C, Mitzey A, Speth RC, Brownfield MS. Immunohistochemical localization of, and angiotensin II receptor subtypes in the rat adrenal, pituitary, and brain with a perspective commentary. Int J Hypertens. 2013;2013:175428,1-23.DOI: 10.1155/2013/175428.

Červenka L, Vaněčková I, Husková Z, Vaňurková Z, Erbanová M, Thumová M, et al. Pivotal role of AT1A receptors in the development of two-kidney, one-clip hypertension: study in AT1A receptor knockout mice. J Hypertens. 2008;26(7):1379-1389.DOI: 10.1097/HJH.0b013e3282fe6eaa.

Červenka L, Horáček V, Vaněčková I, Hubáček JA, Oliverio MI, Coffman TM, et al. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40(5):735-741.DOI: 10.1161/01.hyp.0000036452.28493.74.

da Silva GM, da Silva MC, Nascimento DVG, Lima Silva EM, Gouvêa FFF, de França Lopes LG, et al. Nitric oxide as a central molecule in hypertension: focus on the vasorelaxant activity of new nitric oxide donors. Biology (Basel). 2021;10(10):1041.DOI: 10.3390/biology10101041.

Navar LG, Ichihara A, Chin SY, Imig JD. Nitric oxide-angiotensin II interactions in angiotensin II-dependent hypertension. Acta physiologica scandinavica. 2000;168(1):139-147.DOI: 10.1046/j.1365-201x.2000.00630.x.

Choopani S, Nematbakhsh M. Estradiol supplement or induced hypertension may attenuate the angiotensin II type 1 receptor antagonist-promoted renal blood flow response to graded angiotensin II administration in ovariectomized rats. J Renin Angiotensin Aldosterone Syst. 2022;2022:3223008.DOI: 10.1155/2022/3223008.

Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension. 2002;39(3):799-802.DOI: 10.1161/hy0302.104673.

Bürgelová M, Kramer HJ, Teplan V, Thumová M, Červenka L. Effects of angiotensin-(1-7) blockade on renal function in rats with enhanced intrarenal Ang II activity. Kidney Int. 2005;67(4):1453-1461.

DOI: 10.1111/j.1523-1755.2005.00222.x.

Siragy HM, Carey RM. Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension. 1999;33(5):1237-1242.DOI: 10.1161/01.hyp.33.5.1237.

Brown RD, Hilliard LM, Mirabito KM, Firth LC, Moritz KM, Evans RG, et al. Reduced sensitivity of the renal vasculature to angiotensin II in young rats: the role of the angiotensin type 2 receptor. Pediatr Res. 2014;76(5):448-452.DOI: 10.1038/pr.2014.121.

Lee SH, Lee YH, Jung SW, Kim DJ, Park SH, Song SJ, et al. Sex-related differences in the intratubular renin-angiotensin system in two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol. 2019;317(3):F670-F82.DOI: 10.1152/ajprenal.00451.2018.

Chou YH, Chu TS, Lin SL. Role of renin‐angiotensin system in acute kidney injury‐chronic kidney disease transition. Nephrology (Carlton). 2018;23:121-125.DOI: 10.1111/nep.13467.

Kontogiannis J, Burns KD. Role of AT1 angiotensin II receptors in renal ischemic injury. Am J Physiol. 1998;274(1):F79-F90.DOI: 10.1152/ajprenal.1998.274.1.F79.

Allred AJ, Chappell MC, Ferrario CM, Diz DI. Differential actions of renal ischemic injury on the intrarenal angiotensin system. Am J Physiol Renal Physiol. 2000;279(4):F636-F45.DOI: 10.1152/ajprenal.2000.279.4.F636.

Amiri F, Garcia R. Renal angiotensin II receptor regulation in two-kidney, one clip hypertensive rats: effect of ACE inhibition. Hypertension. 1997;30(3):337-344.DOI: 10.1161/01.hyp.30.3.337.

Matavelli LC, Siragy HM. AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol. 2015;65(3):226-232.DOI: 10.1097/FJC.0000000000000208.

Matavelli LC, Huang J, Siragy HM. Angiotensin AT2 receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension. 2011;57(2):308-313.DOI: 10.1161/HYPERTENSIONAHA.110.164202.

Samimiat A, Khosravi MS, Hassanshahi J, Nematbakhsh M. The effect of AT2 and Mas receptors antagonists on renal hemodynamic and excretory disorders induced by ischemia/reperfusion in male and female rats. Physiol Pharmacol. 2018;22(2):133-140.

Zimmerman D, Burns KD. Angiotensin-(1-7) in kidney disease: a review of the controversies. Clin Sci (Lond). 2012;123(6):333-346.DOI: 10.1042/CS20120111.

Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol. 2013;216(2):R1-R17.DOI: 10.1530/JOE-12-0341.

Alawi LF. Role of Angiotensin II Type 1A Receptors on Renal and Urinary Angiotensin Converting Enzyme 2 (ACE2) and Neprilysin (NEP) in the Two-Kidney One-Clip (2K1C) Model of Renovascular Hypertension. Wright State University;2015:1-92.

Available from: https://corescholar.libraries.wright. edu/etd_all/2031/.

Jang H-S, Kim J, Kim KY, Kim JI, Cho MH, Park KM. Previous ischemia and reperfusion injury results in resistance of the kidney against subsequent ischemia and reperfusion insult in mice; a role for the Akt signal pathway. Nephrol Dial Transplant. 2012;27(10):3762-3770.DOI: 10.1093/ndt/gfs097.

Jang HS, Kim J, Park YK, Park KM. Infiltrated macrophages contribute to recovery after ischemic injury but not to ischemic preconditioning in kidneys. Transplantation. 2008;85(3):447-455.DOI: 10.1097/TP.0b013e318160f0d1.

Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, et al. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PloS One. 2012;7(2):e32296,1-10.DOI: 10.1371/journal.pone.0032296.

Livingston MJ, Wang J, Zhou J, Wu G, Ganley IG, Hill JA, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy. 2019;15(12):2142-2162.DOI: 10.1080/15548627.2019.1615822.

Ge YZ, Wu R, Xin H, Liu H, Lu TZ, Zhao YC, et al. Effects of ischemic preconditioning on the systemic and renal hemodynamic changes in renal ischemia reperfusion injury. Int J Clin Exp Pathol. 2015;8(2):1128-1140.PMID: 25972999.

Samadi M, Tabibian F, Moradzadeh K, Nassiri SM, Gheisari Y. Evaluating the effect of remote ischemic preconditioning on kidney ischemia-reperfusion injury. J Res Med Sci. 2020;25:6.DOI: 10.4103/jrms.JRMS_249_19.

Jang HS, Kim JI, Kim J, Park JW, Park KM. Angiotensin II removes kidney resistance conferred by ischemic preconditioning. Biomed Res Int. 2014;2014:602149,1-10.DOI: 10.1155/2014/602149.

ES ED, Hassan A, Salem S, Fadil S, Taha A. Cardioprotective effect of losartan alone or in combination with remote ischemic preconditioning on the biochemical changes induced by ischemic/reperfusion injury in a mutual prospective study with a clinical and experimental animal arm. Heart Res Open J. 2017;4(3):57-65.DOI: 10.17140/HROJ-4-142.

Cervenka L, Wang C-T, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33(1):102-107.DOI: 10.1161/01.hyp.33.1.102.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.