The effects of kindling during pregnancy on long-term potentiation (LTP) induction and M1 muscarinic acetylcholine receptors in male rat offspring
Abstract
Background and purpose: Neonates of pregnant women with epilepsy may compromise normal neurodevelopment and hippocampal morphology. Memory and learning disorders and a decrease in verbal IQ scores are seen in these children later in life. In the previous study, we suggested that the central muscarinic cholinergic receptors had an important role in learning and memory deficits induced by prenatal pentylenetetrazol-kindling in pups born to kindled mothers. This study aimed to investigate the effects of kindling during pregnancy on long-term potentiation (LTP) induction and the role of M1 muscarinic acetylcholine receptors in the hippocampus of male offspring.
Experimental approach: Twenty female Wistar rats were divided into two groups on the 13th day of their gestation (kindled and control; n = 10). Animals in the first group were kindled by i.p. injections of 25 mg/kg body weight pentylenetetrazol every 15 min until seizures occurred and the control group received normal saline. The effect of maternal seizures and perfusion of specific M1 muscarinic receptors antagonist (telenzepine at doses of 0.01, 0.1, and 1 nmol) on the LTP induction of 80 pups were tested at 12 weeks of age by field potential recordings.
Findings/Results: The results of the electrophysiological study revealed that recurrent seizures during pregnancy impaired field excitatory postsynaptic potentials (fEPSP)-LTP induction and normal development of M1 muscarinic receptors in the hippocampus of male offspring. Also, the results demonstrated that maternal seizure did not significantly affect the paired-pulse indexes and population spike-LTP in the hippocampus of male offspring.
Conclusion and implications: Our study showed that recurrent seizures during pregnancy cause impaired fEPSP-LTP induction and abnormal development of the M1 muscarinic receptor in the hippocampus.
Keywords
Full Text:
PDFReferences
Hvas CL, Henriksen TB, Qstergaard JR. Birth weight in offspring of women with epilepsy. Epidemiol Rev. 2000;22(2):275-282.DOI: 10.1093/oxfordjournals.epirev.a018039.
Frankel WN. Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet. 2009;25(8):361-367. DOI: 10.1016/j.tig.2009.07.001.
George IC. How do you treat epilepsy in pregnancy?. Neurol Clin Pract.2017;7(4):363-371.DOI: 10.1212/CPJ.0000000000000387.
Artama M, Auvinen A, Raudaskoski T, Isojarvi I, Isojarvi J. Antiepileptic drug use of women with epilepsy and congenital malformations in offspring. Neurology. 2005;64(11):1874-1878. DOI: 10.1212/01.WNL.0000163771.96962.1F.
Baka M, Uyanıkgil Y, Yurtseven M, Turgut M. Influence of penicillin-induced epileptic activity during pregnancy on postnatal hippocampal nestin expression in rats: light and electron microscopic observations. Childs Nerv Syst. 2004;20(10):726-733.DOI: /10.1007/s00381-004-1010-7.
Adab N, Kini U, Vinten J, Ayres J, Baker G, Clayton-Smith J, et al. The longer term outcome of children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry. 2004;75(11):1575-1583.DOI: 10.1136/jnnp.2003.029132.
Abraham WC, Logan B, Greenwood JM, Dragunow M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci. 2002;22(21):9626-9634.DOI: 10.1523/JNEUROSCI.22-21-09626.2002.
Izquierdo I, Vianna MR, Izquierdo LA, Barros DM, Szapiro G, Coitinho AS, et al. Memory retrieval and its lasting consequences. Neurotox Res. 2002;4(5-6):573-593.DOI: 10.1080/10298420290031441.
Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC, et al. Activation of muscarinic M1 acetylcholine receptors induces long-term potentiation in the hippocampus. Cereb Cortex. 2016;26(1):414-426.DOI:10.1093/cercor/bhv227. Epub 2015 Oct 15.
Le Duigou C, Savary E, Kullmann DM, Miles R. Induction of anti-Hebbian LTP in CA1 stratum oriens interneurons: interactions between group I metabotropic glutamate receptors and M1 muscarinic receptors. J Neurosci. 2015;35(40):13542-13554.DOI: 10.1523/JNEUROSCI.0956 15.2015.
Frinchi M, Nuzzo D, Scaduto P, Carlo M, Massenti MF, Belluardo N, et al. Anti-inflammatory and antioxidant effects of muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. Sci Rep. 2019;9(1):14233,1-16. DOI: 10.1038/s41598-019-50708-w.
Cornejo BJ, Mesches MH, Coultrap S, Browning MD, Benke TA. A single episode of neonatal seizures permanently alters glutamatergic synapses. Ann Neurol.2007;61(5):411-426.DOI: 10.1002/ana.21071.
Pourmotabbed A, Mahmoodi G, Mahmoodi S, Mohammadi-Farani A, Nedaei S, Pourmotabbed T. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring. Neuroscience. 2014;279:232-237.DOI: 10.1016/j.neuroscience.2014.08.028.
Pourmotabbed A, Nedaei S, Cheraghi M, Moradian S, Touhidi A, Aeinfar M, et al. Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience. 2011;172:205-211.DOI: 10.1016/j.neuroscience.2010.11.001.
Edwards HE, Dortok D, Tam J, Won D, Burnham WM. Prenatal stress alters seizure thresholds and the development of kindled seizures in infant and adult rats. Horm Behav. 2002;42(4):437-447.DOI: 10.1006/hbeh.2002.1839.
Jalili C, Salahshoor MR, Pourmotabbed A, Moradi S, Roshankhah Sh, Darehdori AS. The effects of aqueous extract of Boswellia serrata on hippocampal region CA1 and learning deficit in kindled rats. Res Pharm Sci. 2014;9(5):351-358.PMID: 25657807; PMCID: PMC4318003.
Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin Neurophysiol. 1972; 32(3):281-294.DOI: 10.1016/0013-4694(72)90177-0.
Becker A, Grecksch G, Ruthrich H-L, Pohle W, Marx B, Matthies H. Kindling and its consequences on learning in rats. Behav Neural Biol. 1992;57(1):37-43.DOI: 10.1016/0163-1047(92)90735-m.
Huang LT, Yang SN, Liou CW, Hung PL, Lai MC, Wang CL, et al. Pentylenetetrazol‐induced recurrent seizures in rat pups: time course on spatial learning and long‐term effects. Epilepsia. 2002;43(6): 567-573.DOI: 10.1046/j.1528-1157.2002.29101.x.
Zarei F, Moradpour F, Moazedi AA, Pourmotabbed A, Veisi M. Nandrolone administration abolishes hippocampal fEPSP-PS potentiation and passive avoidance learning of adolescent male rats. Can J Physiol Pharmacol. 2019;97(2):130-139.DOI: 10.1139/cjpp-2018-0293.
Salimi Z, Khajehpour L, Moradpour F, Moazedi AA, Pourmotabbed A, Zarei F. Nandrolone improve synaptic plasticity at the hippocampus CA1 area and spatial localization in the Morris water maze of male adolescent rats. Neurosci Res. 2020;158:21-29.DOI: 10.1016/j.neures.2019.09.001
Khani F, Radahmadi M, Alaei H. The protective effects of crocin on input-output functions and long-term potentiation of hippocampal ca1 area in rats exposed to chronic social isolated stress. Basic Clin Neurosci. 2022;13(2):165-174. DOI: 10.32598/bcn.2022.2346.2.
Moradpour F, Fathollahi Y, Naghdi N, Hosseinmardi N, Javan M. Prepubertal castration‐associated developmental changes in sigma‐1 receptor gene expression levels regulate hippocampus area CA 1 activity during adolescence. Hippocampus. 2016;26(7):933-946.DOI: 10.1002/hipo.22576.
Dolatabadi LK, Reisi P. Acute effect of cholecystokinin on short-term synaptic plasticity in the rat hippocampus. Res Pharm Sci. 2014;9(5):331-336.
PMID: 25657805.
Hatten ME. Central nervous system neuronal migration. Annu Rev Neurosci. 1999;22(1):511-539.DOI: 10.1146/annurev.neuro.22.1.511.
Hatten ME. The role of migration in central nervous system neuronal development. Curr Opin Neurobiol. 1993;3(1):38-44.DOI: 10.1016/0959-4388(93)90033-u.
Nathan PJ, Watson J, Lund J, Davies CH, Peters G, Dodds CM, et al. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int J Neuropsychopharmacol. 2013;16(4):721-731.DOI: 10.1017/S1461145712000752.
Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16(6):710-715.DOI: 10.1016/j.conb.2006.09.002.
Mitsushima D, Sano A, Takahashi T. 2013. A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun. 2013;4(1):2760-2771.DOI: 10.1038/ncomms3760.
do Vale TG, da Silva AV, Lima DC, de Lima E, Torres LB, Cossa AC, et al. Seizures during pregnancy modify the development of hippocampal interneurons of the offspring. Epilepsy Behav. 2010;19(1):20-25.DOI: 10.1016/j.yebeh.2010.06.032.
Moradpour F, Fathollahi Y, Naghdi N, Hosseinmardi N, Javan M. Prepubertal castration causes the age‐dependent changes in hippocampal long‐term potentiation. Synapse. 2013;67(5): 235-244.DOI: 10.1002/syn.21636.
Salimi Z, Pourmotabbed, A., Nedaei SE, Khazaei MS, Moradpour F, Zarei F. Anastrozole eliminates the improvement effects of nandrolone on hippocampal synaptic plasticity in adolescent male rats. Biol Bull Russ Acad Sci. 2021;48(6): 783-792. DOI: 10.1134/S1062359021130070.
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355-405.DOI: 10.1146/annurev.physiol.64.092501.114547.
Scott R, and Rusakov DA. Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. J Neurosci. 2006;26:7071-7081. DOI: 10.1523/JNEUROSCI.0946-06.2006.
Scott P, Cowan AI, and Stricker C. Quantifying impacts of short-term plasticity on neuronal information transfer. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;85(4Pt1):041921,1-15.DOI: 10.1103/PhysRevE.85.041921.
Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59(6):861-872.DOI: 10.1016/j.neuron.2008.08.019.
Suárez LM, Cid E, Gal B, Inostroza M, Brotons-Mas JR, Gómez-Domínguez D, et al. Systemic injection of kainic acid differently affects LTP magnitude depending on its epileptogenic efficiency. PLoS One. 2012;7(10):e48128,1-10.DOI: 10.1371/journal.pone.0048128.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.