A comparative study of the arazyme-based fusion proteins with various ligands for more effective targeting cancer therapy: an in-silico analysis

Rezvan Mehrab , Hamid Sedighian, Fattah Sotoodehnejadnematalahi, Raheleh Halabian, Abbas Ali Imani Fooladi

Abstract


Background and purpose: Recently, the use of immunotoxins for targeted cancer therapy has been proposed, to find new anticancer drugs with high efficacy on tumor cells with minimal side effects on normal cells. we designed and compared several arazyme (AraA)-based fusion proteins with different ligands to choose the best-targeted therapy for interleukin 13 receptor alpha 2 (IL13Rα2)-overexpressed cancer cells. For this purpose, IL13Rα2 was selected as a receptor and IL13 and IL13.E13K were evaluated as native and mutant ligands, respectively. In addition, Pep-1 and A2b11 were chosen as the peptide ligands for targeted cancer therapy.

Experimental approach: Several bioinformatics servers were used for designing constructs and optimization. The structures of the chimeric proteins were predicted and verified by I-TASSER, Q-Mean, ProSA, Ramachandran plot, and Verify3D program. Physicochemical properties, toxicity, and antigenicity were predicted by ProtParam, ToxinPred, and VaxiJen. HawkDock, LigPlot+, and GROMACS software were used for docking and molecular dynamics simulation of the ligand-receptor interaction.

Findings/Results: The in silico results showed AraA-A2b11 has higher values of confidence score and                        Q-mean score was obtained for high-resolution crystal structures. All chimeric proteins were stable, non-toxic, and non-antigenic. AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 retained its natural structure and                                              based on ligand-receptor docking and molecular dynamic analysis, the binding ability of
AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 to IL13Rα2 was sufficiently strong.

Conclusion and implications: Based on the bioinformatics result AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 was a stable fusion protein with two separate domains and high affinity with the IL13Rα2 receptor. Therefore, AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 fusion protein could be a new potent candidate for target cancer therapy.


Keywords


Arazyme, Cancer; In silico; Interleukin 13; Targeting therapy; Peptide ligand.

Full Text:

PDF

References


Maleki F, Sadeghifard N, Sedighian H, Bakhtiyari S, Hosseini HM, Imani Fooladi AA. TGFαL3-SEB fusion protein as an anticancer against ovarian cancer. Eur J Pharmacol. 2020;870:172919,1-8. DOI: 10.1016/j.ejphar.2020.172919.

Mohseni Moghadam Z, Halabian R, Sedighian H, Behzadi E, Amani J, Imani Fooladi AA. Designing and analyzing the structure of DT-STXB fusion protein as an anti-tumor agent: an in silico approach. Iran J Pathol. 2019;14(4): 305-312. DOI: 10.30699/ijp.2019.101200.2004.

Mazor R, Pastan I. Immunogenicity of immunotoxins containing pseudomonas exotoxin a: causes, consequences, and mitigation. Front Immunol. 2020;11:1261,1-12. DOI: 10.3389/fimmu.2020.01261.

Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs. 2020;12(1):1703531,1-55. DOI: 10.1080/19420862.2019.1703531.

Havaei SM, Aucoin MG, Jahanian-Najafabadi A. Pseudomonas exotoxin-based immunotoxins: over three decades of efforts on targeting cancer cells with the toxin. Front Oncol. 2021;11:781800,1-17. DOI: 10.3389/fonc.2021.781800.

Duque AED, Perekhrestenko T, Musteata V, Zodelava M, Guthrie TH, Strack T, et al. A phase II study of MT-3724, a novel CD20-targeting engineered toxin body, to evaluate safety, pharmacodynamics, and efficacy in subjects with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38(15_suppl): TPS8074. DOI: 10.1200/JCO.2020.38.15_suppl.TPS8074.

Kawai H, Ando K, Maruyama D, Yamamoto K, Kiyohara E, Terui Y, et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Sci. 2021;112(6):2426-2435. DOI: 10.1111/cas.14906.

Pereira FV, Ferreira-Guimaraes CA, Paschoalin T, Scutti JA, Melo FM, Silva LS, et al. A natural bacterial-derived product, the metalloprotease arazyme, inhibits metastatic murine melanoma by inducing MMP-8 cross-reactive antibodies. PloS One. 2014;9(4):e96141,1-11. DOI: 10.1371/journal.pone.0096141.

Kwak J, Lee K, Shin DH, Maeng JS, Park DS, Oh HW, et al. Biochemical and genetic characterization of arazyme, an extracellular metalloprotease produced from Serratia proteamaculans HY-3. J Microbiol Biotechnol. 2007;17(5):761-768.

PMID: 18051297.

Pereira FV, Melo AC, de Melo FM, Mourao-Sa D, Silva P, Berzaghi R, et al. TLR4-mediated immunomodulatory properties of the bacterial metalloprotease arazyme in preclinical tumor models. Oncoimmunology. 2016;5(7):e1178420,1-52. DOI: 10.1080/2162402x.2016.1178420.

Amjadi G, Parivar K, Mousavi SF, Imani Fooladi AA. Effect of metalloprotease arazyme on the expression of MMP2 and MMP9 genes in metastasis of colon and ovarian cancer cell lines. Thrita. 2020;8(2):e100004,1-6. DOI: 10.5812/thrita.100004.

Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. ARA-linker-TGFαL3: a novel chimera protein to target breast cancer cells. Med Oncol. 2021; 38(8): 96. DOI: 10.1007/s12032-021-01546-2.

Kim IS, Yang EJ, Shin DH, Son KH, Park HY, Lee JS. Effect of arazyme on the lipopolysaccharide induced inflammatory response in human endothelial cells. Mol Med Rep. 2014;10(2):1025-1029. DOI: 10.3892/mmr.2014.2231.

Kim IS, Kim MJ, Shin DH, Son KH, Park HY, Lee JS. Arazyme inhibits cytokine expression and upregulates skin barrier protein expression. Mol Med Rep. 2013;8(2):551-556. DOI: 10.3892/mmr.2013.1520.

Kim IS, Lee NR, Baek SY, Kim EJ, Kim JS, Jeong TS, et al. Inhibitory effect of arazyme on the development of atopic dermatitis-like lesions in BALB/c and Nc/Nga mice. Mol Med Rep. 2015;11(5):3995-4001. DOI: 10.3892/mmr.2015.3225.

Yousefi F, Mousavi SF, Siadat SD, Aslani MM, Amani J, Rad HS, et al. Preparation and in vitro evaluation of antitumor activity of TGFalphaL3-SEB as a ligand-targeted superantigen. Technol Cancer Res Treat. 2016;15(2):215-226. DOI: 10.1177/1533034614568753.

Imani Fooladi AA, Yousefi F, Mousavi SF, Amani J. In silico design and analysis of TGFalphaL3-SEB fusion protein as "a new antitumor agent" candidate by ligand-targeted superantigens technique. Iran J Cancer Prev. 2014;7(3):152-64.

Ahn SW, Lee CM, Kang MA, Hussein UK, Park HS, Ahn AR, et al. IL4Rα and IL13Rα1 are involved in the development of human gallbladder cancer. J Pers Med. 2022;12(2):249,1-20. DOI: 10.3390/jpm12020249.

Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, et al. Interleukin-13: a promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev. 2019;45:9-23. DOI: 10.1016/j.cytogfr.2018.12.001.

Xie M, Wu XJ, Zhang JJ, He CS. IL-13 receptor α2 is a negative prognostic factor in human lung cancer and stimulates lung cancer growth in mice. Oncotarget. 2015;6(32):32902-32913. DOI: 10.18632/oncotarget.5361.

Sharma P, Sonawane P, Herpai D, D’Agostino R, Rossmeisl J, Tatter S, et al. Multireceptor targeting of glioblastoma. Neuro Oncol Adv. 2020;2(1):1-11. DOI: 10.1093/noajnl/vdaa107.

Pandya H, Gibo DM, Garg S, Kridel S, Debinski W. An interleukin 13 receptor α 2-specific peptide homes to human Glioblastoma multiforme xenografts. Neuro Oncol. 2012;14(1):6-18. DOI: 10.1093/neuonc/nor141.

Le Joncour V, Laakkonen P. Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem. 2018;26(10):2797-2806. DOI: 10.1016/j.bmc.2017.08.052.

Kurihara R, Horibe T, Shimizu E, Torisawa A, Gaowa A, Kohno M, et al. A novel interleukin-13 receptor alpha 2-targeted hybrid peptide for effective glioblastoma therapy. Chem Biol Drug Des. 2019;94(1):1402-1413. DOI: 10.1111/cbdd.13517.

Ataee MH, Mirhosseini SA, Mirnejad R, Rezaie E, Mahmoodzadeh Hosseini H, Amani J. Design of two immunotoxins based rovalpituzumab antibody against DLL3 receptor; a promising potential opportunity. Res Pharm Sci. 2022;17(4):428-444. DOI: 10.4103/1735-5362.350243.

Rouhani M, Valizadeh V, Ahangari Cohan R, Norouzian D. Computational design, structure refinement and molecular dynamics simulation of novel engineered serratiopeptidase analogs. J Biomol Struct Dyn. 2019;37(16):4171-4180. DOI: 10.1080/07391102.2018.1540361.

Jahangiri A, Amani J, Halabian R, Imani Fooladi AA. In Silico analyses of Staphylococcal enterotoxin B as a DNA vaccine for cancer therapy. Int J Pept Res Ther. 2018;24(1):131-142. DOI: 10.1007/s10989-017-9595-3.

Rezaie E, Bidmeshki Pour A, Amani J, Mahmoodzadeh Hosseini H. Bioinformatics predictions, expression, purification and structural analysis of the PE38KDEL-scfv immunotoxin against EPHA2 receptor. Int J Pept Res Ther. 2020;26(2):979-996. DOI: 10.1007/s10989-019-09901-8.

Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33(7):2302-2309.

DOI: 10.1093/nar/gki524.

Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511-1522. DOI: 10.1038/nprot.2012.085.

Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32(Web Server issue):W526-W531. DOI: 10.1093/nar/gkh468.

Bhattacharya D, Nowotny J, Cao R, Cheng J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016;44(W1): W406-W409. DOI: 10.1093/nar/gkw336.

Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. Targeting the EGFR in cancer cells by fusion protein consisting of arazyme and third loop of TGF-alpha: an in silico study. J Biomol Struct Dyn. 2021;1-14. DOI: 10.1080/07391102.2021.1963318.

Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40-48. DOI: 10.1002/prot.21078.

Saha S, Raghava GPS. BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In: Nicosia G, Cutello V, Bentley PJ, Timmis J, editors. artificial immune systems. Springer, Berlin, Heidelberg. 2004;3239. pp. 197-204. DOI: 10.1007/978-3-540-30220-9_16.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, et al. In silico approach for predicting toxicity of peptides and proteins. PloS One. 2013;8(9):e73957,1-10. DOI: 10.1371/journal.pone.0073957.

Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, et al. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 2019;47(W1):W322-W330.

DOI: 10.1093/nar/gkz397.

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701-1718.

DOI: 10.1002/jcc.20291.

Guvench O, MacKerell Jr AD. Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol. 2008;443:63-88.

DOI: 10.1007/978-1-59745-177-2_4.

Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461. DOI: 10.1517/17460441.2015.1032936.

Poorhassan F, Nemati F, Saffarian P, Mirhosseini SA, Motamedi MJ. Design of a chitosan-based nano vaccine against epsilon toxin of Clostridium perfringens type D and evaluation of its immunogenicity in BALB/c mice. Res Pharm Sci. 2021;16(6):575-585. DOI: 10.4103/1735-5362.327504.

Shokri B, Zarghi A, Shahhoseini S, Mohammadi R, Kobarfard F. Design, synthesis and biological evaluation of peptide-NSAID conjugates for targeted cancer therapy. Arch Pharm (Weinheim). 2019;352(8): e1800379,1-8. DOI: 10.1002/ardp.201800379.

Tu M, Wange W, Cai L, Zhu P, Gao Z, Zheng W. IL-13 receptor α2 stimulates human glioma cell growth and metastasis through the Src/PI3K/Akt/mTOR signaling pathway. Tumour Biol. 2016;37(11):14701-14709. DOI: 10.1007/s13277-016-5346-x.

Patel DK, Menon DV, Patel DH, Dave G. Linkers: a synergistic way for the synthesis of chimeric proteins. Protein Expr Purif. 2021;191:106012. DOI: 10.1016/j.pep.2021.106012.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.